Skip to main content
Log in

Quantum lattice gas approach for the Maxwell equations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We show that a quantum lattice gas approach can provide a viable means for numerically solving the classical Maxwell equations. By casting the Maxwell equations in Dirac form, the propagator may be discretized, and we describe how the accuracy relative to the time step may be systematically increased. The quantum lattice gas form of the discretization is suitable for implementation on hybrid classical-quantum computers. We discuss a number of extensions, including application to inhomogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berns D.M., Orlando T.P.: Implementation schemes for the factorized quantum lattice-gas algorithm for the one dimensional diffusion equation using persistent-current qubits. Quant. Info. Proc. 4, 265–282 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bialynicki-Birula, I.: Dirac and Weyl equations on a lattice as unitary cellular automata. arXiv:hep-th/9304070v1 (1993)

  3. Bialynicki-Birula I.: On the wave function of the photon. Acta. Phys. Pol. A 86, 97–116 (1994)

    Google Scholar 

  4. Bialynicki-Birula I.: Weyl, Dirac and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49, 6920–6927 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. Boghosian B.M., Taylor W.: Quantum lattice-gas model for the many-particle Schrödinger equation. Phys. Rev. E 57, 54–66 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chen Z., Yepez J., Cory D.G.: Simulation of the Burgers equation by NMR quantum-information processing. Phys. Rev. A 74, 042321-1–042321-7 (2006)

    ADS  Google Scholar 

  7. Harting J. et al.: Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational grids. Phil. Trans. Royal Soc. A 363, 1895–1915 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. Moses H.E.: Solution of Maxwell’s equations in terms of a spinor notation: the direct and inverse problem. Phys. Rev. 113, 1670–1679 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Pravia M.A., Chen Z., Yepez J., Cory D.G.: Towards a NMR implementation of a quantum lattice gas algorithm. Comp. Phys. Commun. 146, 339–344 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Rothman D.H., Zaleski S.: Lattice Gas Cellular Automata. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  12. Sakai A., Kamakura Y., Taniguchi K.: Two-dimensional simulation of tunneling using quantum lattice-gas automata. Proc. Nanotech. 3, 180–183 (2005)

    Google Scholar 

  13. Suzuki M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400–407 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Suzuki M.: General theory of higher-order decomposition of exponential operators and symplectic integrators. Phys. Lett. A 165, 387–395 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. Vahala L., Vahala G., Yepez J.: Lattice Boltzmann and quantum lattice gas representations of one dimensional magnetohydrodynamic turbulence. Phys. Lett. A 306, 227–234 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Yepez J.: Lattice-gas quantum computation. Int. J. Mod. Phys. C 9, 1587–1596 (1998)

    Article  ADS  Google Scholar 

  17. Yepez, J.: Quantum lattice-gas model for computational fluid dynamics. Phys. Rev. E 63, 046702-1–046702-18 (2001)

  18. Yepez J.: Quantum lattice-gas model for the Burgers equation. J. Stat. Phys. 107, 203–224 (2002)

    Article  MATH  Google Scholar 

  19. Yepez J., Boghosian B.: An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation. Comp. Phys. Commun. 146, 280–294 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Coffey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, M.W. Quantum lattice gas approach for the Maxwell equations. Quantum Inf Process 7, 275–289 (2008). https://doi.org/10.1007/s11128-008-0088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-008-0088-3

Keywords

PACS

Navigation