Skip to main content
Log in

Overexpression of Petunia SOC1-like Gene FBP21 in Tobacco Promotes Flowering Without Decreasing Flower or Fruit Quantity

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

FBP21 is one of the SOC1-like genes isolated from Petunia hybrida. Based on sequence analysis, FPB21 is suggested to have a role in promoting flowering. In this study, FBP21 was expressed in a tobacco host plant under the control of the CaMV 35S promoter. Our results showed that the transgene accelerated flowering, i.e. the transgenic plants flowered just 3 months after germination, in comparison to the wild-type tobacco which flowered after 5 months. Plant morphology was also affected, with the transgenic tobacco plants developing at least five robust lateral branches, while the control plants generally had just three. Total leaf area was significantly reduced in the transgenic tobacco compared to wild-type tobacco. By contrast, there was no significant difference between transgenic and control plants for the total number of flowers or fruits. Thus, the flower or fruit yield expressed per unit leaf area was higher in transgenic tobacco than in wild-type plants. Semi-quantitative RT-PCR analysis indicated that overexpression of FBP21 in tobacco resulted in the up-regulation of some flowering-related genes. The results of this study in tobacco indicate that the Petunia FBP21 gene may permit the engineering of early-flowering and short-growth habits without compromising flower or fruit yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

EST:

Expressed sequence tag

GA:

Gibberellin

RT-PCR:

Reverse transcription-polymerase chain reaction

WT:

Wild-type cells

References

  • Amasino RM (2005) Vernalization and flowering time. Curr Opin Biotechnol 16:154–158. doi:10.1016/j.copbio.2005.02.004

    Article  PubMed  CAS  Google Scholar 

  • Amaya I, Ratcliffe OJ, Bradley DJ (1999) Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell 11:1405–1418

    Article  PubMed  CAS  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043. doi:10.1126/science.1126038

    Article  PubMed  Google Scholar 

  • Chung YY, Kim SR, Finkel D, Yanofsky MF, An G (1994) Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant Mol Biol 26:657–665

    Article  PubMed  CAS  Google Scholar 

  • Dinkins R, Pflipsen C, Thompson A, Collins GB (2002) Ectopic expression of an Arabidopsis single zinc finger gene in tobacco results in dwarf plants. Plant Cell Physiol 43:743–750

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712. doi:10.1007/s11248-005-6632-3

    Article  PubMed  CAS  Google Scholar 

  • Eriksson S, Bohlenius H, Moritz T, Nilsson O (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18:2172–2181

    Article  PubMed  CAS  Google Scholar 

  • Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RG (2004) Ectopic expression of the Petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16:1490–1505

    Article  PubMed  CAS  Google Scholar 

  • Gallego-Giraldo L, Garcia-Martinez JL, Moritz T, Lopez-Diaz I (2007) Flowering in tobacco needs gibberellins but is not promoted by the levels of active GA1 and GA4 in the apical shoot. Plant Cell Physiol 48:615–625. doi:10.1093/pcp/pcm034

    Article  PubMed  CAS  Google Scholar 

  • Guan CM, Zhu SS, Li XG, Zhang XS (2006) Hormone-regulated inflorescence induction and TFL1 expression in Arabidopsis callus in vitro. Plant Cell Rep 25:1133–1137. doi:10.1007/s00299-006-0165-y

    Article  PubMed  CAS  Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19

    Article  PubMed  CAS  Google Scholar 

  • Hellens RP, Mullineaux PM, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  PubMed  CAS  Google Scholar 

  • Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eicholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231. doi:10.1126/science.227.4691.1229

    Article  CAS  Google Scholar 

  • Immink RG, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC (2003) Analysis of the Petunia MADS-box transcription factor family. Mol Genet Genomics 268:598–606. doi:10.1007/s00438-002-0781-3

    PubMed  CAS  Google Scholar 

  • Jang S, An K, Lee S, An G (2002) Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol 43:230–238

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Yang WS, Yi GH, Oh BG, An G (2000) Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol Breed 6:581–592. doi:10.1023/A:1011388620872

    Article  CAS  Google Scholar 

  • Kelly AJ, Bonnlander MB, Meeks-Wagner DR (1995) NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell 7:225–234

    Article  PubMed  CAS  Google Scholar 

  • Kim KW, Shin JH, Moon J, Kim M, Lee J, Park MC, Lee I (2003) The function of the flowering time gene AGL20 is conserved in Crucifers. Mol Cells 16:136–141

    PubMed  CAS  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus x domestica Borkh.). Plant Cell Physiol 51:561–575. doi:10.1093/pcp/pcq021

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J 55:832–843. doi:10.1111/j.1365-313X.2008.03552.x

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Xi W, Shen L, Tan C, Yu H (2009) Regulation of floral patterning by flowering time genes. Dev Cell 16:711–722. doi:10.1016/j.devcel.2009.03.011

    Article  PubMed  CAS  Google Scholar 

  • Mandel T, Lutziger I, Kuhlemeier C (1994) A ubiquitously expressed MADS-box gene from Nicotiana tabacum. Plant Mol Biol 25:319–321

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohshima S, Murata M, Sakamoto W, Ogura Y, Motoyoshi F (1997) Cloning and analysis of the Arabidopsis gene TERMINAL FLOWER1. Mol Gen Genet 254:186–194

    Article  PubMed  CAS  Google Scholar 

  • Salehi H, Ransom CB, Oraby HF, Seddighi Z, Sticklen MB (2005) Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C. J Plant Physiol 162:711–717

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of COSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Seo E, Lee H, Jeon J, Park H, Kim J, Noh YS, Lee I (2009) Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21:3185–3197. doi:10.1105/tpc.108.063883

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Igen-o MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384:59–62. doi:10.1038/384059a0

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Sheldon CC, Gelliwell CA, Upadhyaya NM, Dennis ES, Peacock WJ (2003) Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotech J 1:361–369. doi:10.1046/j.1467-7652.2003.00034.x

    Article  CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Singer S, Liu Z (2010) Petunia AGAMOUS enhancer-derived chimeric promoters specify a carpel-, stamen-, and petal-specific expression pattern sufficient for engineering male and female sterility in tobacco. Plant Molecular Biology Reporter. doi:10.1007/s11105-010-0215-z

  • Zhang S, Hu W, Wang L, Lin C, Cong B, Sun C (2005) TFL1/CEN-like genes control intercalary meristem activity and phase transition in rice. Plant Sci 168:1393–1408. doi:10.1016/j.plantsci.2004.10.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (30671477, 30972018). The authors thank Dr. Alex C. McCormac (Mambo-Tox Ltd., Southampton, UK) for help with the editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzhu Bao.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, G., Ning, G., Zhang, W. et al. Overexpression of Petunia SOC1-like Gene FBP21 in Tobacco Promotes Flowering Without Decreasing Flower or Fruit Quantity. Plant Mol Biol Rep 29, 573–581 (2011). https://doi.org/10.1007/s11105-010-0263-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0263-4

Keywords

Navigation