Skip to main content
Log in

Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Recent studies with dicot plants reveal that floral organ development is controlled by a group of regulatory factors containing the MADS domain. In this study, we have isolated and characterized a cDNA clone from rice, OsMADS1, which encodes a MADS-domain-containing protein. The OsMADS1 amino acid sequence shows 56.2% identity to AGL2 and 44,4% identity to AP1. The MADS box region was the most homologous to other MADS-domain-containing proteins. Northern blot analysis indicated that the rice MADS gene was preferentially expressed in floral organs. In situ localization studies showed that the transcript was uniformly present in young flower primordia and later became localized in palea, lemma, and ovary. Ectopic expression of OsMADS1 with the CaMV 35S promoter in transgenic tobacco plants dramatically alters development, resulting in short, bushy, early-flowering plants with reduced apical dominance. These results suggest that the OsMADS1 gene is involved in flower induction and that it may be used for genetic manipulation of certain plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An G, Ebert PR, Mitra A, Ha SB: Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual, pp. A3/1–19. Kluwer Academic Publishers, Dordrecht, Netherlands (1988).

    Google Scholar 

  2. Angenent GC, Busscher M, Franken J, Mol JNM, van Tunen AJ: Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983–993 (1992).

    Google Scholar 

  3. Benfey PN, Chua N-H: The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250: 959–966 (1990).

    Google Scholar 

  4. Bradley D, Carpenter R, Sommer H, Hartley N, Coen E: Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72: 85–95 (1993).

    Article  PubMed  Google Scholar 

  5. Coen ES: The role of homeotic genes in flower development and evolution. Annu Rev Plant Physiol Plant Mol Biol 42: 241–279 (1991).

    Article  Google Scholar 

  6. Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R: floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311–1322 (1990).

    Article  PubMed  Google Scholar 

  7. Cox KH, Goldberg RB: Analysis of plant gene expression. In: Shaw CH (ed) Plant Molecular Biology: A Practical Approach. IRL Press, Oxford (1988).

    Google Scholar 

  8. Gasser CS: Molecular studies on the differentiation of floral organs. Annu Rev Plant Physiol Plant Mol Biol 42: 621–649 (1991).

    Article  Google Scholar 

  9. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: A binary vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–181 (1983).

    Google Scholar 

  10. Huijser PW, Klein J, Lonnig W-E, Meijer H, Saedler H, Sommer H: Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinim majus. EMBO J 11: 1239–1249 (1992).

    PubMed  Google Scholar 

  11. Jack T, Brochman LL, Meyerowitz EM: The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697 (1992).

    Article  PubMed  Google Scholar 

  12. Kempin SA, Mandel MA, Yanofsky MF: Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol 103: 1041–1046 (1993).

    Article  PubMed  Google Scholar 

  13. Ma H, Yanofsky MF, Meyerowitz EM: AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Devel 5: 484–495 (1991).

    PubMed  Google Scholar 

  14. Mandel MA, Bowman JL, Kempin SA, Ma H, Meyerowitz EM, Yanofsky MF: Manipulation of floral structure in transgenic tobacco. Cell 71: 133–143 (1992).

    Article  PubMed  Google Scholar 

  15. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF: Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273–277 (1992).

    Article  PubMed  Google Scholar 

  16. Mizukami Y, Ma H: Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71: 119–131 (1992).

    Article  PubMed  Google Scholar 

  17. Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer A, Lifschitz E: The MADS box gene family in tomato: temporal expression during floral development, converted secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1: 255–266 (1991).

    PubMed  Google Scholar 

  18. Pnueli L, Hareven D, Broday L, Lifschitz E: The TM5 MADS box gene mediates organ differentiation in three inner whorls of tomato flowers. Plant Cell 6: 175–186 (1994).

    Article  PubMed  Google Scholar 

  19. Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E: Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6: 163–173 (1994).

    Article  PubMed  Google Scholar 

  20. Rogers SO, Bendich AJ: Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual, pp. A6: 1–10. Kluwer Academic Publishers, Dordrecht, Netherlands (1988).

    Google Scholar 

  21. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  22. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  23. Schmidt RJ, Velt B, Mandel MA, Mena M, Hake S, Yanofsky MF: Identification and molecular characterization of ZAG1, the maize homologue of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5: 729–737 (1993).

    Article  PubMed  Google Scholar 

  24. Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lonnig W-E, Saedler H, Sommer H: Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression through flower development. EMBO J 11: 251–263 (1992).

    PubMed  Google Scholar 

  25. Sommer H, Beltran J-P, Huijser P, Pape H, Lonnig W-E, Saedler H, Schwarz-Sommer Z: Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9: 605–613 (1990).

    PubMed  Google Scholar 

  26. Tamas IA: Hormonal regulation of apical dominance. In: Davies PJ (ed) Plant Hormones and their Role in Plant Growth and Development, pp. 393–410. Martinus Nijhoff, Dordrecht, Netherlands (1987).

    Google Scholar 

  27. Trobner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig W-E, Saedler H, Sommer H, Schwarz-Sommer Z: GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11: 4693–4704 (1992).

    PubMed  Google Scholar 

  28. Tsuchimoto S, van der Krol AR, Chua N-H: Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell 5: 843–853 (1993).

    Article  PubMed  Google Scholar 

  29. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM: LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859 (1992).

    Article  PubMed  Google Scholar 

  30. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM: The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39 (1990).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, YY., Kim, SR., Finkel, D. et al. Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant Mol Biol 26, 657–665 (1994). https://doi.org/10.1007/BF00013751

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013751

Key words

Navigation