Skip to main content

Advertisement

Log in

Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The response of rice plants to the application of inoculant containing two Azospirillum brasilense strains was studied under field conditions. The experiment was performed as three treatments with four replicates in randomized complete blocks arranged as plots of 60 m2 in an area on a Vertic Argiudol soil type in the province of Entre Ríos, Argentina. The bacterial rhizosphere community and also the diazotrophic isolates obtained from control and inoculated rice plants were analyzed in relation to their physiology and biological nitrogen fixation (BNF). The MPN of diazotrophs in the rhizosphere varied during the ontogenic cycle. The patterns of distribution of the microbial physiological activities obtained by principal component analysis of community-level physiological profiles (CLPP) showed differences in the utilization of carbon sources by the rhizosphere communities among treatments. Although the analyses of DGGE 16S and nifH profiles have not indicated that the inoculation influenced the genetic diversity of bacterial communities among treatments, they revealed that the banding profiles were altered in different parts of the rice plant by each Azospirillum inoculation treatment. These observations suggest that physiological responses of plant tissues to the inoculation may have occurred. According to agronomic parameters of each treatment, the Azospirillum inoculation increased aerial biomass at the tillering and grain-filling stages. Although the N content accumulated in rice plants increased by 16 and 50 kg ha−1, the BNF contribution could not be estimated under our experimental conditions by the 15N balance technique. Based on this field inoculation experiment to rice plants, it is noteworthy that our data suggest that due to Azospirillum inoculation the increase of total N accumulated in rice plants could be a tool to help farmers to improve production and maintain high input of plant residues, providing more organic matter to the soil and guaranteeing sustainability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azevedo MS, Teixeira KRS, Kirchhof G, Hartmann A, Baldani JI (2005) Influence of soil and host plant crop on the genetic diversity of Azospirillum amazonense isolates. Pedobiologia 49:565–576. doi:10.1016/j.pedobi.2005.06

    Article  CAS  Google Scholar 

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Ciênc 77(3):549–579. doi:10.1590/S0001-37652005000300014

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum plant relationships: environmental and physiological advances (1900–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H, Whitmoyer RE (1991) Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense Cd. J Gen Microbiol 137:187–196

    Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and enviromental advances (1997–2003). Can J Microbiol 50:521–577. doi:10.1139/w04-035

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209. doi:10.1007/BF00032247

    Article  CAS  Google Scholar 

  • Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to grasses and cereals. Aust J Plant Physiol 28:889–895

    Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263. doi:10.1007/s002480000087

    CAS  PubMed  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122. doi:10.1016/j.ejsobi.2008.06.005

    Article  CAS  Google Scholar 

  • Coelho MRR, Marriel IE, Jenkins SN, Lanyon CV, Seldin L, O’Donnell AG (2009) Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl Soil Ecol 42:48–53. doi:10.1016/j.apsoil.2009.01.010

    Article  Google Scholar 

  • Cong PT, Dung TD, Hien TM, Hien NT, Choudhury ATMA, Kecskés ML, Kennedy IR (2009) Inoculant plant growth promoting micoorganisms enhance utilisation of urea-N and grain yield of paddy rice in southern Vietnam. Eur J Soil Biol 45:52–61. doi:10.1016/j.ejsobi.2008.06.006

    Article  CAS  Google Scholar 

  • Direito ICN, Teixeira KRS (2002) Simulação e comportamento de migração de produtos da amplificação parcial do gene nifH quando submetidos ao DGGE. Rev Univ Rural Sér Ciên Vida 22:123–129

    Google Scholar 

  • Döbereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in nonleguminous crop plants. Springe, Madison, Wisconsin

    Google Scholar 

  • Freitag TE, Chang L, Clegg CD, Prosser JI (2005) Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Appl Environ Microbiol 71:8323–8334. doi:JB.182.14./AEM.71.12.8323-8334.2005

    Article  CAS  PubMed  Google Scholar 

  • García de Salamone IE, Dobereiner J (1996) Maize genotype effects on the response to Azospirillum inoculation. Biol Fertil Soils 21:193–196. doi:10.1007/BF00335934

    Article  Google Scholar 

  • García de Salamone IE, Dobereiner J, Urquiaga S, Boddey RM (1996) Biological Nitrogen Fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256. doi:10.1007/BF00335952

    Article  Google Scholar 

  • Khan S, Qureshi MI, Kamaludin TA, Abdin MZ (2007) Protocol for isolation of genomic DNA from dry and fresh roots of medicinal plants suitable for RAPD and restriction digestion. Afr J Biotechnol 6:175–178

    CAS  Google Scholar 

  • Martin-Didonet CCG, Chubatsu LS, Souza EM, Kleina M, Rego FGM, Rigo LU, Yates MG, Pedrosa FO (2000) Genome structure of the genus Azospirillum. J Bacteriol 182:4113–4116. doi:10.1128/JB.182.14.4113-4116.2000

    Article  CAS  PubMed  Google Scholar 

  • Mills AL, Garland JL (2002) Application of physiological profiles to assess community properties. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stenzenback LD (eds) Manual of environmental microbiology, 2nd edn. ASM Press, Washington, DC, pp 135–146

    Google Scholar 

  • Muyzer G, De Wall EC, Uitterlinden AG (1993) Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  • Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16s rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    PubMed  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601. doi:10.1016/0038-0717(94)90311-5

    Article  CAS  Google Scholar 

  • Olivares FL, Baldani VLD, Reis VM, Baldani JI, Dobereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves, predominantly of Gramineae. Biol Fertil Soils 21:197–200. doi:10.1007/BF00335935

    Article  Google Scholar 

  • Rodrigues EP, Rodrigues LS, Oliveira ALM, Baldani VLD, Teixeira KRS, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261. doi:10.1007/s11104-007-9476-1

    Article  CAS  Google Scholar 

  • Rodríguez-Cáceres E (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991

    Google Scholar 

  • Roesch LFW, Olivares FL, Passaglia LMP, Selbach PA, Saccol de Sá EL, Camargo FAO (2006) Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J Microbiol Biotechnol 22:967–974. doi:10.1007/s11274-006-9142-4

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sánchez O, Gasol JM, Massana R, Mas J, Pedrós-Alió C (2007) Comparison of different denaturing gradient gel electrophoresis primer sets for the study of marine bacterioplankton communities. Appl Environ Microbiol 73:5962–5967. doi:10.1128/AEM.00817-07

    Article  PubMed  Google Scholar 

  • Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrilamide gels. Biotechniques 17:914–921

    CAS  PubMed  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Shekhar Nautiyal C, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    CAS  PubMed  Google Scholar 

  • Wartiainen I, Eriksson T, Zheng W, Rasmussen U (2008) Variation in the active diazotrophic community in rice paddy—nifH PCR-DGGE analysis of rhizosphere and bulk soil. Appl Soil Ecol 39:65–75. doi:10.1016/j.apsoil.2007.11.008

    Article  Google Scholar 

  • Xie CH, Yokota A (2005) Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55:1435–1438. doi:10.1099/ijs.0.63503-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Daniel Mildenberger for his collaboration and dedication in conducting the field experiment. Special thanks to Dr. Raúl O. Pedraza, Dr. R.M. Boddey, Dr Jay Garland and Miss Florencia D´Auria for their valuable contribution with criticism and suggestions to this paper. We also thank the financial support for travel expenses by the cooperative project PROSUL/CNPq process n°.490286/2005-4 and Red DIMIAGRI/Acción 409AC0379 CYTED (CNPq process n° 490013/2010-4). Finally, we are grateful for the criticisms and suggestions of the anonymous reviewers which greatly contributed to the improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés E. García de Salamone.

Additional information

Responsible Editor: Euan K. James.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Sequence matches for the bands excised from the 16S rDNA DGGE gels containing rice samples to sequences deposited at the GenBank (DOC 54 kb)

Fig. S1

16S rDNA DGGE profile of Gram-negative bacterial communities endophytically associated with Grains (G), Roots (R) and Aerial Part (AP) of rice plants subjected to Azospirillum brasilense strains inoculation (MI1 or MI2) and control uninoculated plants (C). Symbols indicate: Aa) Azospirillum amazonense CBAmC, 1) GC, 2) RC, 3) APC, 4) GMI1, 5) RMI1, 6) APMI1, 7) A. brasilense 40M, 8) A. brasilense 42M, 9)GMI2, 10) RMI2, 11) APMI2, P) 16S produts of reference strains: Burkholderia tropica PPe8, G. diazotrophicus PAL5, A. amazonense CBAmC, Herbaspirillum rubrisubalbicans HCC103 and H. seropedicae HRC54 (DOC 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

García de Salamone, I.E., Di Salvo, L.P., Escobar Ortega, J.S. et al. Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336, 351–362 (2010). https://doi.org/10.1007/s11104-010-0487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0487-y

Keywords

Navigation