Skip to main content
Log in

Coupling Between Chemical Reactivity and Structural Relaxation in Pharmaceutical Glasses

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To test the hypothesis that the molecular motions associated with chemical degradation in glassy amorphous systems are governed by the molecular motions associated with structural relaxation. The extent to which a chemical process is linked to the motions associated with structural relaxation will depend on the nature of the chemical process and molecular motion requirements (e.g., translation of a complete molecule, rotational diffusion of a chemical functional group). In this study the chemical degradation and molecular mobility were measured in model systems to assess the degree of coupling between chemical reactivity and structural relaxation. The model systems included pure amorphous cephalosporin drugs, and amorphous molecular mixtures containing a chemically labile drug and an additive expected to moderate molecular mobility.

Methods

Amorphous drugs and mixtures with additives were prepared by lyophilization from aqueous solution. The physical properties of the model systems were characterized using optical microscopy and differential scanning calorimetry. The chemical degradation of the drugs alone and in mixtures with additives was measured using high-performance liquid chromatography (HPLC). Molecular mobility was measured using isothermal microcalorimetry to measure enthalpy changes associated with structural relaxation below T g.

Results

A weak correlation between the rates of degradation and structural relaxation times in pure amorphous cephalosporins suggests that reactivity in these systems is coupled to molecular motions in the glassy state. However, when sucrose was added to one of the cephalosporin drugs stability improved even though this addition reduced T g and the relaxation time constant, \( \tau _{{\text{D}}} ^{{\text{ $ \beta $ }}} \), suggesting that there was no correlation between reactivity and structural relaxation in the cephalosporin mixtures. In contrast, the rate of ethacrynate sodium dimer formation in mixtures was more strongly coupled to the relaxation time constant, \( \tau _{{\text{D}}} ^{{\text{ $ \beta $ }}} \).

Conclusions

These studies suggest that the extent to which chemical degradation is coupled to structural relaxation in glasses motions is determined by how closely the motions of the rate controlling step in chemical degradation are associated with structural relaxation. Moderate coupling between the rate of dimer formation for ethacrynate sodium in mixtures with sucrose, trehalose and PVP and structural relaxation constants suggests that chemical changes that require more significant molecular motion, and includes at least some translational diffusion, are more strongly coupled to the molecular motions associated with structural relaxation. The observation that sucrose stabilizes cefoxitin sodium even though it lowers T g and reduces the relaxation time constant, \( \tau _{{\text{D}}} ^{{\text{ $ \beta $ }}} \) is perhaps a result of the importance of other kinds of molecular motions in determining the chemical reactivity in glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. R. Oberholzer and G. S. Brenner. Cefoxitin sodium: solution and solid state chemical stability studies. J. Pharm. Sci. 68:836–866 (1979).

    Google Scholar 

  2. M. J. Pikal and K. M. Dellerman. Stability testing of pharmaceuticals by high-sensitivity isothermal calorimetry at 25°C: cephalosporins in the solid and aqueous solution states. Int. J. Pharm. 50:233–252 (1989).

    Article  CAS  Google Scholar 

  3. J. Li, Y. Guo, and G. Zografi. The solid-state stability of amorphous quinapril in the presence of beta-cyclodextrins. J. Pharm. Sci. 91:229–243 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. B. C. Hancock, S. L. Shamblin, and G. Zografi. The molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm. Res. 12:799–806 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. K. Kawakami and M. J. Pikal. Calorimetric investigation of the structural relaxation of amorphous materials: evaluating validity of the methodologies. J. Pharm. Sci. 94:948–965 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. S. L. Shamblin, X. Tang, L. Chang, B. C. Hancock, and M. J. Pikal. Characterization of the time scales of molecular motion in pharmaceutically important glasses. J. Phys. Chem., B 103:4113–4121 (1999).

    Article  CAS  Google Scholar 

  7. M. C. Lai, M. J. Hageman, R. L. Schowen, R. T. Borchardt, and E. M. Topp. Chemical stability of peptides in polymers. 1. Effect of water on peptide deamidation in poly(vinyl alcohol) and poly(vinyl pyrrolidone) matrixes. J. Pharm. Sci. 88:1073–1080 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. S. Yoshioka, Y. Aso, and S. Kojima. Temperature- and glass transition temperature-dependence of bimolecular reaction rates in lyophilized formulations described by the Adam–Gibbs–Vogel equation. J. Pharm. Sci. 93:1062–1069 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. M. T. Cicerone and C. L. Soles. Fast dynamics and stabilization of proteins: binary glasses of trehalose and glycerol. Biophys. J. 86:3836–3845 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J. Pharm. Sci. 94:1427–1444 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. B. S. Chang, R. M. Beauvais, A. Dong, and J. F. Carpenter. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation. Arch. Biochem. Biophys. 331:249–258 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. S. P. Duddu and P. R. Dal Monte. Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody. Pharm. Res. 14:591–595 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. C. A. Angell. Strong and fragile liquids. In K. I. Ngai and G. B. Wright (eds.), Relaxation in Complex Systems. National Technical Service, US Department of Commerce, Springfield, 1984, pp. 3–11.

    Google Scholar 

  14. M. D. Ediger, C. A. Angell, and S. R. Nagel. Supercooled liquids and glasses. J. Phys. Chem. 100:13200–13212 (1996).

    Article  CAS  Google Scholar 

  15. C. Angell. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-cryst. Solids 131–133:13–31 (1991).

    Article  Google Scholar 

  16. M. J. Pikal. Mechanisms of protein stabilization during freeze-drying and storage: the relative importance of thermodynamic stabilization and glassy state dynamics. In L. Rey and J. C. May (eds.), Freeze-drying/Lyophilization of Pharmaceutical and Biological Products, Vol. 96, Drugs and the Pharmaceutical Sciences, Marcel Dekker, New York, 1999.

    Google Scholar 

  17. Y. Guo, S. R. Byrn, and G. Zografi. Physical characteristics and chemical degradation of amorphous quinapril hydrochloride. J. Pharm. Sci. 89:128–143 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. F. Fujara, B. Geil, H. Sillescu, and G. Fleischer. Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Zeitschrift fuer Physik B: Condensed Matter 88:195–204 (1992).

    Article  CAS  Google Scholar 

  19. C. A. Angell. Dynamic process in ionic glasses. Chem. Rev. 90:523–532 (1990).

    Article  CAS  Google Scholar 

  20. C. A. Angell, R. D. Bressel, J. L. Green, H. Kanno, M. Oguni, and E. J. Sare. Liquid fragility and the glass transition in water and aqueous solutions. J. Food Eng. 22:115–142 (1994).

    Article  Google Scholar 

  21. I. E. T. Iben, D. Braunstein, W. Doster, H. Frauenfelder, M. K. Hong, J. B. Johnson, S. Luck, P. Ormos, A. Schulte, P. J. Steinback, A. H. Xie, and R. D. Young. Glassy behavior of a protein. Phys. Rev. Lett. 62:1916–1919 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. S. P. Duddu, G. Zhang, and P. R. Dal Monte. The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody. Pharm. Res. 14:596–599 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. J. Liu, D. R. Rigsbee, C. Stotz, and M. J. Pikal. Dynamics of pharmaceutical amorphous solids: the study of enthalpy relaxation by isothermal microcalorimetry. J. Pharm. Sci. 91:1853–1862 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. A. Mangia, A. Scandroglio, S. Silingardi, and P. Del Buttero. High-performance liquid chromatographic analysis of cefoxitin and related chemical compounds. Il Farmaco; edizione pratica 41:107–112 (1986).

    PubMed  CAS  Google Scholar 

  25. G. S. Brenner. Cefoxitin, sodium. Anal. Profiles Drug Subst. 11:169–195 (1982).

    CAS  Google Scholar 

  26. M. J. Pikal, L. Chang, and X. C. Tang. Evaluation of glassy-state dynamics from the width of the glass transition: results from theoretical simulation of differential scanning calorimetry and comparisons with experiment. J. Pharm. Sci. 93:981–984 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. M. Peyron, G. K. Peirens, A. J. Lucas, L. D. Hall, and R. C. Stewart. The modified stretched-exponential model for characterization of NMR relaxation in porous media. J. Magn. Reson. 118:214–220 (1996).

    Article  CAS  Google Scholar 

  28. S. L. Shamblin, B. C. Hancock, Y. Dupuis, and M. J. Pikal. Interpretation of relaxation time constants for amorphous pharmaceutical systems. J. Pharm. Sci. 89:417–427 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. E. M. Cohen. Polarographic determination of ethacrynic acid. J. Pharm. Sci. 60:1702–1704 (1971).

    PubMed  CAS  Google Scholar 

  30. S. L. Shamblin, L. S. Taylor, and G. Zografi. Mixing behavior of colyophilized binary systems. J. Pharm. Sci. 87:694–701 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. L. S. Taylor and G. Zografi. Sugar–polymer hydrogen bond interactions in lyophilized amorphous mixtures. J. Pharm. Sci. 87:1615–1621 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. S. L. Shamblin, E. Y. Huang, and G. Zografi. The effects of co-lyophilized polymeric additives on the glass transition temperature and crystallization of amorphous sucrose. J. Therm. Anal. 47:1567–1579 (1996).

    Article  CAS  Google Scholar 

  33. A. J. Phillips, R. J. Yarwood, and J. H. Collett. Thermal analysis of freeze dried products. Anal. Proc. 23:394–395 (1986).

    CAS  Google Scholar 

  34. R. J. Yarwood, A. J. Phillips, and J. H. Collett. Processing factors influencing the stability of freeze dried sodium ethacrynate. Drug Dev. Ind. Pharm. 12:2157–2170 (1986).

    CAS  Google Scholar 

  35. R. J. Yarwood, W. D. Moore, and J. H. Collett. Liquid chromatographic analysis of ethacrynic acid and degradation products in pharmaceutical systems. J. Pharm. Sci. 74:220–223 (1985).

    PubMed  CAS  Google Scholar 

  36. B. C. Hancock and G. Zografi. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm. Res. 11:471–477 (1994).

    Article  PubMed  CAS  Google Scholar 

  37. M. T. Cicerone and M. D. Ediger. Enhanced translation of probe molecules in supercooled o-terphenyl: signature of spatially heterogeneous dynamics J. Chem. Phys. 104:7210–7218 (1996).

    Article  CAS  Google Scholar 

  38. M. T. Cicerone, P. A. Wagner, and M. D. Ediger. Translational diffusion on heterogeneous lattices: a model for dynamics in glass forming materials. J. Phys. Chem., B 101:8727–8734 (1997).

    Article  CAS  Google Scholar 

  39. C. A. Oksanen and G. Zografi. Molecular mobility in mixtures of absorbed water and solid poly(vinylpyrrolidone). Pharm. Res. 10:791–799 (1993).

    Article  PubMed  CAS  Google Scholar 

  40. M. T. Cicerone, C. L. Soles, Z. Chowdhuri, M. J. Pikal, and L. Chang. Fast dynamics as a diagnostic for excipients in preservation of dried proteins. Am. Pharm. Rev. 8:22, 24–27 (2005).

    Google Scholar 

  41. L. Chang, D. Shepherd, J. Sun, X. Tang, and M. J. Pikal. Effect of sorbitol and residual moisture on the stability of lyophilized antibodies: implications for the mechanism of protein stabilization in the solid state. J. Pharm. Sci. 94:1445–1455 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Merck Frosst Canada for providing the financial support for a postdoctoral fellowship for SLS. Professor Lynne Taylor is acknowledged for performing Raman spectroscopy experiments and interpretation of the data for the objectives of this work. The authors also acknowledge Dr. Xiaolin Tang for his assistance in performing isothermal microcalorimetry experiments in support of this work. The discussions with Professor George Zografi were helpful in bringing understanding to this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheri L. Shamblin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamblin, S.L., Hancock, B.C. & Pikal, M.J. Coupling Between Chemical Reactivity and Structural Relaxation in Pharmaceutical Glasses. Pharm Res 23, 2254–2268 (2006). https://doi.org/10.1007/s11095-006-9080-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9080-8

Key words

Navigation