Skip to main content

Isothermal Crystallization of Pharmaceutical Glasses: Toward Prediction of Physical Stability of Amorphous Dosage Forms

  • Chapter
Advances in Organic Crystal Chemistry
  • 2042 Accesses

Abstract

Difficulty in predicting physical stability of drug molecules during long-term storage is one of the most important issues inhibiting the wide use of amorphous solid dispersions in the pharmaceutical industry. This chapter discusses the isothermal crystallization behavior of pharmaceutical glasses. Although the crystallization time of the different compounds appears to vary widely, initiation time for crystallization can be generalized as a function of T g /T, where T g and T are the glass transition temperature and storage temperature, respectively, if the crystallization is governed by temperature. Compounds, in which crystallization is inhibited by a large energy barrier, exhibit better stability. For these compounds, crystallization is likely to be dominated by local pressure, and stochastic nucleation plays an important role for initiating crystallization. An example, in which an increase in the surface area and adsorption of moisture on the surface changes the dominant factor from pressure to temperature, is also presented. The dominance of either temperature or pressure is related with the nucleation mechanism. This observation should help prediction of the physical stability of amorphous pharmaceuticals and enhance the effective use of amorphous solid dispersions for poorly soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.T.M. Serajuddin, Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88, 1058–1066 (1999)

    Article  CAS  Google Scholar 

  2. L. Yu, Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Deliv. Rev. 48, 27–42 (2001)

    Article  CAS  Google Scholar 

  3. K. Kawakami, Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Adv. Drug Deliv. Rev. 64, 480–495 (2012)

    Article  CAS  Google Scholar 

  4. C. Bhugra, M.J. Pikal, Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J. Pharm. Sci. 97, 1329–1349 (2008)

    Article  CAS  Google Scholar 

  5. T. Miyazaki, S. Yoshioka, Y. Aso, T. Kawanishi, Crystallization rate of amorphous nifedipine analogues unrelated to the glass transition temperature. Int. J. Pharm. 336, 191–195 (2007)

    Article  CAS  Google Scholar 

  6. J.A. Baird, B. van Eerdenbrugh, L.S. Taylor, A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J. Pharm. Sci. 99, 3787–3806 (2010)

    Article  CAS  Google Scholar 

  7. D. Mahlin, S. Ponnambalam, M.H. Hockerfeit, C.A.S. Bergstrom, Toward in silico prediction of glass-forming ability from molecular structure alone: a screening tool in early drug development. Mol. Pharm. 8, 498–506 (2011)

    Article  CAS  Google Scholar 

  8. O.N. Senkov, Correlation between fragility and glass-forming ability of metallic alloys. Phys. Rev. B 76, 104202 (2007)

    Article  Google Scholar 

  9. K. Kawakami, M.J. Pikal, Calorimetric investigation of the structural relaxation of amorphous materials: evaluating validity of the methodologies. J. Pharm. Sci. 94, 948–965 (2005)

    Article  CAS  Google Scholar 

  10. A. Adjanowicz, A. Grzybowski, K. Kaminski, M. Paluch, Temperature and volume effect on the molecular dynamics of supercooled ibuprofen at ambient and elevated pressure. Mol. Pharm. 8, 1975–1979 (2011)

    Article  Google Scholar 

  11. K. Kawakami, T. Usui, M. Hattori, Understanding the glass-forming ability of active pharmaceutical ingredients for designing supersaturating dosage forms. J. Pharm. Sci. 101, 3239–3248 (2012)

    Article  CAS  Google Scholar 

  12. J.A. Baird, D. Santiago-Quinonez, C. Rinaldi, L.S. Taylor, Role of viscosity in influencing the glass-forming ability of organic molecules from the undercooled melt state. Pharm. Res. 29, 271–284 (2012)

    Article  CAS  Google Scholar 

  13. K. Kawakami, T. Harada, K. Miura, Y. Yoshihashi, E. Yonemochi, K. Terada, H. Moriyama, Relationship between crystallization tendencies during cooling from melt and isothermal storage: toward a general understanding of physical stability of pharmaceutical glasses. Mol. Pharm. 11, 1835–1843 (2014)

    Article  CAS  Google Scholar 

  14. T. Harada, K. Kawakami, Y. Yoshihashi, E. Yonemochi, K. Terada, H. Moriyama, Practical approach for measuring heat capacity of pharmaceutical crystals/glasses by modulated-temperature DSC. Chem. Pharm. Bull. 61, 315–319 (2013)

    Article  CAS  Google Scholar 

  15. K.J. Crowley, G. Zografi, The effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) on indomethacin crystallization from the amorphous state. Pharm. Res. 20, 1417–1422 (2003)

    Article  CAS  Google Scholar 

  16. T. Wu, L. Yu, Surface crystallization of indomethacin below Tg. Pharm. Res. 23, 2350–2355 (2006)

    Article  CAS  Google Scholar 

  17. T. Wu, Y. Sun, N. Li, M.M. de Villiers, L. Yu, Inhibiting surface crystallization of amorphous indomethacin by nanocoating. Langmuir 23, 5148–5153 (2007)

    Article  CAS  Google Scholar 

  18. S. Zhang, K. Kawakami, M. Yamamoto, Y. Masaoka, M. Kataoka, S. Yamashita, S. Sakuma, Coaxial electrospray formulations for improving oral absorption of a poorly water-soluble drug. Mol. Pharm. 8, 807–813 (2011)

    Article  Google Scholar 

  19. K. Kawakami, Surface effect on crystallization of ritonavir glass. J. Pharm. Sci. 104(1), 276–279 (2015)

    Article  CAS  Google Scholar 

  20. K. Kawakami, Y. Hasegawa, K. Deguchi, S. Ohki, T. Shimizu, Y. Yoshihashi, E. Yonemochi, K. Terada, Competition of thermodynamic and dynamic factors during formation of multicomponent particles via spray drying. J. Pharm. Sci. 102, 518–529 (2013)

    Article  CAS  Google Scholar 

  21. K. Kawakami, Miscibility analysis of particulate solid dispersions prepared by electrospray deposition. Int. J. Pharm. 433, 71–78 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part supported by World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohsaku Kawakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kawakami, K. (2015). Isothermal Crystallization of Pharmaceutical Glasses: Toward Prediction of Physical Stability of Amorphous Dosage Forms. In: Tamura, R., Miyata, M. (eds) Advances in Organic Crystal Chemistry. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55555-1_18

Download citation

Publish with us

Policies and ethics