Skip to main content
Log in

Comparative genome-wide segregation analysis and map construction using a reciprocal cross design to facilitate citrus germplasm utilization

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Citrus genetic resources are rich but underutilized in breeding because their complex reproductive biology and the scarceness of inheritance studies on agronomic traits. Here, we investigated the genomic distribution of segregation distortion regions, the inheritance of organelle DNA and colinearity between scion citrus linkage maps by using a reciprocal cross design. The parents were Fortune, a hybrid mandarin from C. clementina, and Chandler, a hybrid pummelo from C. grandis that largely differ in fruit size, taste and colour. The inheritance of organelle DNA was studied in 201 hybrids by using four organelle DNA markers, and the linkage maps were based on 174 of those hybrids. Around ten percent of the seedlings derived from the pummelo as female parent showed the same organelle markers as those of the mandarin, indicating a possible exception to their expected maternal inheritance in citrus. Most segregation distortion affects just the allele frequencies, generally representing differences in pollen fertilization success, as a likely consequence of the presence of gametal factors affecting the functionality of gametes and pollen-pistil interactions. The large extension of colinearity found when comparing the C. grandis and C. clementina linkage maps to those previously reported for rootstock species (C. aurantium and P. trifoliata), will be helpful to infer the position of orthologous genes and QTLs in citrus species and for a more useful genetic characterization of citrus germplasm collections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad R, Struss D, Southwick SM (2003) Development and characterization of microsatellite markers in Citrus. J Am Soc Hortic Sci 128:584–590

    CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Asins MJ, Bernet GP, Ruiz C, Cambra M, Guerri J, Carbonell EA (2004) QTL analysis of Citrus Tristeza Virus-citradia interaction. Theor Appl Genet 108:603–611

    Article  CAS  PubMed  Google Scholar 

  • Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Barr CM, Neiman M, Taylor DR (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol 168:39–50

    Article  CAS  PubMed  Google Scholar 

  • Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationship in cultivated citrus and its close relatives. Syst Bot 1:105–136

    Article  Google Scholar 

  • Bausher MG, Singh ND, Lee S-B, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21

    Article  PubMed  Google Scholar 

  • Bernet GP, Asins MJ (2003) Identification and genomic distribution of gypsy-like retrotransposons in Citrus and Poncirus. Theor Appl Genet 108:121–130

    Article  CAS  PubMed  Google Scholar 

  • Birky CW Jr (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148

    Article  CAS  PubMed  Google Scholar 

  • Bretó MP, Ruiz C, Pina JA, Asins MJ (2001) The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylogenet Evol 21(2):285–293

    Article  PubMed  Google Scholar 

  • Chen C, Bowman KD, Choi YA, Dang PM, Rao MN, Huang S, Soneji JR, McCollum TG, Gmitter FG Jr (2008) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genomes 4:1–10

    Article  Google Scholar 

  • Cheng Y, de Vicente MC, Meng H, Guo W, Tao N, Deng X (2005) A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiol 25:661–672

    PubMed  Google Scholar 

  • de Vicente MC, Tanksley SD (1991) Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theor Appl Genet 83:173–178

    Article  Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    Article  CAS  PubMed  Google Scholar 

  • Edmé SJ, Glynn NG, Comstock JC (2006) Genetic segregation of microsatellite markers in Saccharum officinarum and S. spontaneum. Heredity 97:366–375

    Article  PubMed  Google Scholar 

  • FAOSTAT (2009) http://faostat.fao.org/site/567/default.aspx

  • Fraser LR (1959) The relation of seedling yellows to tristeza. In: Wallace JM (ed) Citrus virus diseases. University of California, Berkeley, pp 57–62

    Google Scholar 

  • Frei U, Peiretti EG, Wenzel G (2003) Significance of cytoplasmic DNA in plant breeding. Plant Breed Rev 23:175–210

    Google Scholar 

  • Frisch M, Quint M, Melchinger AE (2004) Duplicate marker loci can result in incorrect locus orders on linkage maps. Theor Appl Genet 108:485–496

    Article  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  Google Scholar 

  • Green RM, Vardi A, Galun E (1986) The plastome of Citrus. Physical map, variation among Citrus cultivars and species and comparison with related genera. Theor Appl Genet 72:170–177

    Article  CAS  Google Scholar 

  • Guerra M (1984) Cytogenetics of Rutaceae. II. Nuclear DNA content. Caryologia 37:219–226

    CAS  Google Scholar 

  • Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38

    Article  CAS  PubMed  Google Scholar 

  • Herrero R, Asins MJ, Carbonell EA, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. II. Genetic relationships among genera and species. Theor Appl Genet 93:1327–1334

    Article  Google Scholar 

  • Kearsey MJ, Ramsay LD, Jennings DE, Lydiate DJ, Bouhuon EJR, Marshall DF (1996) Higher recombination frequencies in females compared to male meiosis in Brassica oleracea. Theor Appl Genet 92:363–367

    Article  CAS  Google Scholar 

  • Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet 94:701–706

    Article  CAS  Google Scholar 

  • Korpelainen H (2004) The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften 91:505–518

    Article  CAS  PubMed  Google Scholar 

  • Marloth RH (1938) The citrus rootstock problem. Farming in S Afr, June

  • McCauley DE, Bailey MF, Sherman NA, Darnell MZ (2005) Evidence for paternal transmission and heteroplasmy in the mitochondrial genome of Silene vulgaris, a gynodioecious plant. Heredity 95:50–58

    Article  CAS  PubMed  Google Scholar 

  • Moreira CD, Gmitter FG Jr, Grosser JW, Huang S, Ortega VM, Chase CD (2002) Inheritance of organelle DNA sequence in Citrus–Poncirus intergeneric cross. J Hered 93:174–178

    Article  CAS  PubMed  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Ohtani K, Yamamoto H, Akimitsu K (2002) Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing. PNAS USA 99:2439–2444

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AC, Bastianel M, Cristofani-Yaly M, Amaral AM, Machado MA (2007) Development of genetic maps of the citrus varieties ‘Murcott’ tangor and ‘Pera’ sweet orange by using fluorescent AFLP markers. J Appl Genet 48:219–231

    Google Scholar 

  • Raghuvanshi SS (1962) Cytogenetical studies in the genus Citrus IV. Evolution in genus Citrus. Cytologia 27:172–188

    Google Scholar 

  • Rand DM (2001) The units of selection on mitochondrial DNA. Annu Rev Ecol Syst 32:415–448

    Article  Google Scholar 

  • Ruiz C, Asins MJ (2003) Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet 106:826–836

    CAS  PubMed  Google Scholar 

  • Ruiz C, Bretó MP, Asins MJ (2000) An efficient methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112:89–94

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Swingle WT (1943) The botany of Citrus and its relatives of the orange subfamily. In: Webber HJ, Batchelor LD (eds) The Citrus industry. University of California, Berkeley

    Google Scholar 

  • Tanaka T (1969) Misunderstanding with regards citrus classification and nomenclature. Bull Univ Osaka Prefect Ser B Agric 21:139–145

    Google Scholar 

  • Tang ZX, Wang XF, Hu ZQ, Yang ZF, Xu CW (2007) Genetic disection of cytonuclear epistasis in line crosses. Genetics 177:669–672

    Article  PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap Version 3.0, Software for the calculation of genetic linkage maps Release 3.0. Plant Research International, Wageningen

    Google Scholar 

  • Weber CA, Moore GA, Deng Z, Gmitter FG Jr (2003) Mapping freeze tolerance quantitative trait loci in a C. grandis × Poncirus trifoliata F1 pseudo-testcross using molecular markers. J Am Soc Hortic Sci 128:508–514

    CAS  Google Scholar 

  • Yamamoto M, Kobayashi S, Nakamura Y, Yamada Y (1993) Phylogenic relationships of citrus revealed by RFLP analysis of mitochondrial and chloroplast DNA. Ikushugaku Zasshi 43:355–365

    CAS  Google Scholar 

  • Yamamoto M, Matsumoto R, Okudai N, Yamada Y (1997) Aborted anthers of Citrus resulted from gene-cytoplasmic male sterility. Sci Hortic 70:9–14

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by grants RTA2006-0009-00-00, AGL2008-00197/AGR, Fondo Social Europeo (GPB) and IVIA (JFR). We thank J. Puchades and D. Millán for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Asins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernet, G.P., Fernandez-Ribacoba, J., Carbonell, E.A. et al. Comparative genome-wide segregation analysis and map construction using a reciprocal cross design to facilitate citrus germplasm utilization. Mol Breeding 25, 659–673 (2010). https://doi.org/10.1007/s11032-009-9363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9363-y

Keywords

Navigation