Skip to main content
Log in

Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica aerogel superinsulation products have a tremendous growth potential, particularly for industrial and pipe insulation. However, the high production cost and the poor mechanical properties prevent the adoption of silica aerogel superinsulation outside of the established niche markets. In this paper, we address these two barriers. We analyze the solvent use of current production processes for ambient-dried silica aerogel and derive a minimal solvent process that approaches the theoretical minimum of one volume of solvent for one volume of aerogel. We apply this process at the pilot scale and produce aerogel granulate with a thermal conductivity of 17.4 mW/(m·K). A review of the different mechanical reinforcement strategies reveals that strengthening typically comes with a penalty in thermal conductivity. In contrast, we highlight some of our recent work on hybrid polysaccharide (cellulose, pectin)—silica aerogels, where the mechanical reinforcement did not significantly increase thermal conductivity as a promising avenue for more robust silica-based hybrid aerogel materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koebel M, Rigacci A, Achard P (2011) Aerogels for superinsulation: a synoptic view. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 607–633

    Chapter  Google Scholar 

  2. Koebel M, Rigacci A, Achard P (2012) J Sol–Gel Sci Technol 63:315–339

    Article  Google Scholar 

  3. Maleki H, Durães L, Portugal A (2014) J Non-Cryst Solids 385:55–74

    Article  Google Scholar 

  4. Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Microporous Mesoporous Mater 183:23–29

    Article  Google Scholar 

  5. Kistler SS (1932) J Phys Chem 36:52–64

    Article  Google Scholar 

  6. Kistler SS (1931) Nature 127:741

    Article  Google Scholar 

  7. Flörke OW, Graetsch HA, Brunk F, Benda L, Paschen S, Bergna HE, Roberts WO, Welsh WA, Libanati C, Ettlinger M, Kerner D, Maier M, Meon W, Schmoll R, Gies H, Schiffmann D (2000) Silica, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin

    Google Scholar 

  8. Nicolaon GA, Teichner S (1968) J Bull Soc Chim Fr 1900:1906

    Google Scholar 

  9. Schwertfeger F, Frank D, Schmidt M (1998) J Non-Cryst Solids 225:24–29

    Article  Google Scholar 

  10. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York

    Book  Google Scholar 

  11. Hüsing N, Schubert U (2008) Organically modified monolithic silica aerogels. In: Schubert U, Hüsing N, Laine R (eds) Materials syntheses. Springer, Vienna, pp 39–45

    Chapter  Google Scholar 

  12. Schwertfeger F, Emmerling A, Gross J, Schubert U, Fricke J (1994) Organically modified silica aerogels. In: Attia Y (ed) Sol–gel processing and applications. Plenum press, New York, pp 343–347

    Chapter  Google Scholar 

  13. Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels, the sol–gel handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 519–574

    Google Scholar 

  14. Malfait WJ, Zhao S, Verel R, Iswar S, Rentsch D, Fener R, Zhang Y, Milow B, Koebel MM (2015) Chem Mater. doi:10.1021/acs.chemmater.1025b02801

    Google Scholar 

  15. Schwertfeger F (1998)Process for producing organically modified aerogel. WO1998005591 A1

  16. Koebel M, Zhao S, Brunner S, Simmen C (2015) Process for the production of an aerogel material. WO2015014813 A1

  17. Prakash S, Brinker J, Hurd A, Rao SM (1995) Nature 374:439–443

    Article  Google Scholar 

  18. Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2006) Appl Surf Sci 206:262–270

    Article  Google Scholar 

  19. Malfait WJ, Verel R, Koebel MM (2014) J Phys Chem C 118:25545–25554

    Article  Google Scholar 

  20. Huber L, Zhao S, Koebel MM (2015) In Cost-effective aerogel production by one-pot process, International conference future building & districts sustainability from nano to urban scale, Lausanne, Switzerland, Sept 9–11, 2015. http://infoscience.epfl.ch/record/212778/files/cisbat_proc_VolI_online.pdf

  21. Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2005) Chem Mater 18:285–296

    Article  Google Scholar 

  22. Yin W, Venkitachalam S, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein D (2010) J Biomed Mater Res Part A 92:1431–1439

    Google Scholar 

  23. Nguyen BN, Meador MAB, Medoro A, Arendt V, Randall J, McCorkle L, Shonkwiler B (2010) ACS Appl. Mater Interfaces 2:1430–1443

    Article  Google Scholar 

  24. Duan Y (2012) Fundamental studies on polymer and organic-inorganic hybrid nanoparticles reinforced silica aerogels, Polymer Engineering, The University of Akron, Ann Arbor, 2012, p 257. https://etd.ohiolink.edu/ap/10?0::NO:10:P10_ACCESSION_NUM:akron1333079860

  25. Yuan B, Ding S, Wang D, Wang G, Li H (2012) Mat Lett 75:204–206

    Article  Google Scholar 

  26. Pekala RW (1989) J Mater Sci 24:3221–3227

    Article  Google Scholar 

  27. Rätzsch M, Bucka H, Ivanchev S, Pavlyuchenko V, Leitner P, Primachenko ON (2004) Macromol Symp 217:431–443

    Article  Google Scholar 

  28. Leventis N (2007) Acc Chem Res 40:874–884

    Article  Google Scholar 

  29. Biesmans G, Randall D, Francais E, Perrut M (1998) J Non-Cryst Solids 225:36–40

    Article  Google Scholar 

  30. Rigacci A, Marechal JC, Repoux M, Moreno M, Achard P (2004) J Non-Cryst Solids 350:372–378

    Article  Google Scholar 

  31. Chidambareswarapattar C, McCarver PM, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Chem Mater 25:3205–3224

    Article  Google Scholar 

  32. Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) ACS Appl Mater Interfaces 1:2491–2501

    Article  Google Scholar 

  33. Diascorn N, Calas S, Sallée H, Achard P, Rigacci A (2015) J Supercrit Fluids. doi:10.1016/j.supflu.2015.1005.1012

  34. Weigold L, Mohite DP, Mahadik-Khanolkar S, Leventis N, Reichenauer G (2013) J Non-Cryst Solids 368:105–111

    Article  Google Scholar 

  35. Pekala RW, Alviso CT, LeMay JD (1990) J Non-Cryst Solids 125:67–75

    Article  Google Scholar 

  36. Tan C, Fung BM, Newman JK, Vu C (2001) Adv Mater 13:644–646

    Article  Google Scholar 

  37. Jin H, Nishiyama Y, Wada M, Kuga S (2004) Colloids Surf A 240:63–67

    Article  Google Scholar 

  38. Chen H-B, Chiou B-S, Wang Y-Z, Schiraldi DA (2013) ACS Appl Mater Interfaces 5:1715–1721

    Article  Google Scholar 

  39. Shamsuri AA, Abdullah DK, Daik R (2012) Cellulose Chem Technol 46:45–52

    Google Scholar 

  40. Liu X, Wang M, Risen WM Jr (2002) Polymer-attached functional inorganic-organic hybrid nano-composite aerogels. Materials Research Society, Boston, pp 435–440

    Google Scholar 

  41. Zhang W, Zhang Y, Lu C, Deng Y (2012) J Mat Chem 22 11642–11650

  42. Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Biomacromolecules 15:2188–2195

    Article  Google Scholar 

  43. Sescousse R, Gavillon R, Budtova T (2011) Carbohydr Polym 83:1766–1774

    Article  Google Scholar 

  44. Kobayashi Y, Saito T, Isogai A (2014) Angew Chem Int Ed 53:10394–10397

    Article  Google Scholar 

  45. Zhao S, Zhang Z, Sèbe G, Wu R, Rivera Virtudazo RV, Tingaut P, Koebel MM (2015) Adv Funct Mater 25:2326–2334

    Article  Google Scholar 

  46. Zhang G, Dass A, Rawashdeh A-MM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis N (2004) J Non-Cryst Solids 350:152–164

    Article  Google Scholar 

  47. Randall JP, Meador MAB, Jana SC (2013) J Mater Chem A 1:6642–6652

    Article  Google Scholar 

  48. Meador MAB, Capadona LA, McCorkle L, Papadopoulos DS, Leventis N (2007) Chem Mater 19:2247–2260

    Article  Google Scholar 

  49. Capadona LA, Meador MAB, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Polymer 47:5754–5761

    Article  Google Scholar 

  50. Meador MAB (2011) Improving elastic properties of polymer-reinforced aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 315–334

    Chapter  Google Scholar 

  51. Churu G, Zupančič B, Mohite D, Wisner C, Luo H, Emri I, Sotiriou-Leventis C, Leventis N, Lu H (2015) J Sol–gel Sci Technol 75:98–123

    Article  Google Scholar 

  52. Bertino MF, Hund JF, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Leventis N (2004) J Sol–Gel Sci Technol 30:43–48

    Article  Google Scholar 

  53. Ayers MR, Hunt AJ (2001) J Non-Cryst Solids 285:123–127

    Article  Google Scholar 

  54. Hu X, Littrel K, Ji S, Pickles DG, Risen WM Jr (2001) J Non-Cryst Solids 288:184–190

    Article  Google Scholar 

  55. Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose 21:2625–2636

    Article  Google Scholar 

  56. Quignard F, Valentin R, Di Renzo F (2008) New J Chem 32:1300–1310

    Article  Google Scholar 

  57. Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Angew Chem Int Ed 51:2076–2079

    Article  Google Scholar 

  58. Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Carbohydr Polym 122:293–300

    Article  Google Scholar 

  59. Hayase G, Kanamori K, Abe K, Yano H, Maeno A, Kaji H, Nakanishi K (2014) ACS Appl Mater Interfaces 6:9466–9471

    Article  Google Scholar 

  60. Zhao S, Malfait WJ, Demilecamps WJ, Zhang Y, Brunner S, Huber L, Tingaut P, Rigacci A, Budtova T, Koebel MM (2015) Angew Chem Int Ed Engl 127:14490–14494

    Article  Google Scholar 

  61. Gavillon R, Budtova T (2007) Biomacromolecules 9:269–277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias M. Koebel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koebel, M.M., Huber, L., Zhao, S. et al. Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale. J Sol-Gel Sci Technol 79, 308–318 (2016). https://doi.org/10.1007/s10971-016-4012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4012-5

Keywords

Navigation