Skip to main content
Log in

A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

It is well known that nonlinear conjugate gradient methods are very effective for large-scale smooth optimization problems. However, their efficiency has not been widely investigated for large-scale nonsmooth problems, which are often found in practice. This paper proposes a modified Hestenes–Stiefel conjugate gradient algorithm for nonsmooth convex optimization problems. The search direction of the proposed method not only possesses the sufficient descent property but also belongs to a trust region. Under suitable conditions, the global convergence of the presented algorithm is established. The numerical results show that this method can successfully be used to solve large-scale nonsmooth problems with convex and nonconvex properties (with a maximum dimension of 60,000). Furthermore, we study the modified Hestenes–Stiefel method as a solution method for large-scale nonlinear equations and establish its global convergence. Finally, the numerical results for nonlinear equations are verified, with a maximum dimension of 100,000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kärkkäinen, T., Majava, K., Mäkelä, M.M.: Comparison of formulations and solution methods for image restoration problems. Inverse Probl. 17, 1977–1995 (2001)

    Article  MATH  Google Scholar 

  2. Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10, 507–518 (2015)

    Article  Google Scholar 

  3. Zhang, H., Wu, Q., Nguyen, T., Sun, X.: Synthetic aperture radar image segmentation by modified student’s t-mixture model. IEEE Trans. Geosci. Remote Sens. 52, 4391–4403 (2014)

    Article  Google Scholar 

  4. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing Co., Singapore (1992)

    Book  MATH  Google Scholar 

  5. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  6. Birge, J.R., Qi, L., Wei, Z.: A general approach to convergence properties of some methods for nonsmooth convex optimization. Appl. Math. Optim. 38, 141–158 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rockafellar, R.T.: Monotone operators and proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birge, J.R., Qi, L., Wei, Z.: Convergence analysis of some methods for minimizing a nonsmooth convex function. J. Optim. Theory Appl. 97, 357–383 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: A family of variable metric proximal methods. Math. Program. 68, 15–47 (1995)

    MATH  Google Scholar 

  10. Wei, Z., Qi, L.: Convergence analysis of a proximal Newton method. Numer. Funct. Anal. Optim. 17, 463–472 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wei, Z., Qi, L., Birge, J.R.: A new methods for nonsmooth convex optimization. J. Inequal. Appl. 2, 157–179 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Yuan, G., Wei, Z.: The Barzilai and Borwein gradient method with nonmonotone line search for nonsmooth convex optimization problems. Math. Model. Anal. 17, 203–216 (2012)

    Article  MathSciNet  Google Scholar 

  13. Sagara, N., Fukushima, M.: A trust region method for nonsmooth convex optimization. J. Ind. Manag. Optim. 1, 171–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yuan, G., Wei, Z., Wang, Z.: Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization. Comput. Optim. Appl. 54, 45–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lemaréchal, C.: Extensions diverses des méthodes de gradient et applications. Thèse d’Etat, Paris (1980)

  16. Wolfe, P.: A method of conjugate subgradients for minimizing nondifferentiable convex functions. Math. Program. Stud. 3, 145–173 (1975)

    Article  MathSciNet  Google Scholar 

  17. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable optimization. Math. Program. 46, 105–122 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2, 121–152 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics, vol. 1133. Springer, Berlin (1985)

  20. Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69, 89–109 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Schramm, H.: Eine kombination yon bundle-und trust-region-verfahren zur Lösung nichtdifferenzierbare optimierungsprobleme. Bayreuther Mathematische Schriften, Heft 30. Universitat Bayreuth, Germany (1989)

  22. Haarala, M., Miettinen, K., Mäkelä, M.M.: New limited memory bundle method for large-scale nonsmooth optimization. Optim. Methods Softw. 19, 673–692 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hestenes, M.R., Stiefel, E.: Method of conjugate gradient for solving linear equations. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dai, Y., Yuan, Y.: A nonlinear conjugate gradient with a strong global convergence properties. SIAM J. Optim. 10, 177–182 (2000)

    Article  Google Scholar 

  26. Fletcher, R.: Practical Method of Optimization, Vol I: Unconstrained Optimization, 2nd edn. Wiley, New York (1997)

    Google Scholar 

  27. Polak, E., Ribière, G.: Note sur la convergence de directions conjugees. Rev. Fr. Inform. Rech. Opér. 3, 35–43 (1969)

    MATH  Google Scholar 

  28. Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2, 21–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hu, Y.F., Storey, C.: Global convergence result for conjugate method. J. Optim. Theory Appl. 71, 399–405 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wei, Z., Li, G., Qi, L.: Global convergence of the Polak–Ribière–Polyak conjugate gradient methods with inexact line search for nonconvex unconstrained optimization problems. Math. Comput. 77, 2173–2193 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ahmed, T., Storey, D.: Efficient hybrid conjugate gradient techniques. J. Optim. Theory Appl. 64, 379–394 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Al-Baali, A.: Descent property and global convergence of the Flecher–Reeves method with inexact line search. IMA J. Numer. Anal. 5, 121–124 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei, Z., Yao, S., Liu, L.: The convergence properties of some new conjugate gradient methods. Appl. Math. Comput. 183, 1341–1350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yuan, G.: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems. Optim. Lett. 3, 11–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan, G., Lu, X.: A modified PRP conjugate gradient method. Ann. Oper. Res. 166, 73–90 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yuan, G., Lu, X., Wei, Z.: A conjugate gradient method with descent direction for unconstrained optimization. J. Comput. Appl. Math. 233, 519–530 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, L., Zhou, W., Li, D.: A descent modified Polak–Ribière–Polyak conjugate method and its global convergence. IMA J. Numer. Anal. 26, 629–649 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Buhmiler, S., Krejić, N., Lužanin, Z.: Practical quasi-Newton algorithms for singular nonlinear systems. Numer. Algorithms 55, 481–502 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Solodov, M.V., Svaiter, B.F.: A globally convergent inexact Newton method for systems of monotone equations. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 355–369. Kluwer Academic Publishers, Dordrecht (1998)

    Chapter  Google Scholar 

  41. Toint, P.L.: Numerical solution of large sets of algebraic nonlinear equations. Math. Comput. 173, 175–189 (1986)

    Article  MathSciNet  Google Scholar 

  42. Yuan, G., Lu, X.: A new backtracking inexact BFGS method for symmetric nonlinear equations. Comput. Math. Appl. 55, 116–129 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yuan, G., Yao, S.: A BFGS algorithm for solving symmetric nonlinear equations. Optimization 62, 82–95 (2013)

    Article  MathSciNet  Google Scholar 

  44. La Cruz, W., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)

    Article  MATH  Google Scholar 

  45. La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods Softw. 18, 583–599 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tong, X., Qi, L.: On the convergence of a trust-region method for solving constrained nonlinear equations with degenerate solutions. J. Optim. Theory Appl. 123, 187–211 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yuan, G., Lu, X., Wei, Z.: BFGS trust-region method for symmetric nonlinear equations. J. Comput. Appl. Math. 230, 44–58 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yuan, G., Wei, Z., Lu, X.: A BFGS trust-region method for nonlinear equations. Computing 92, 317–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, J., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58, 283–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Grippo, L., Sciandrone, M.: Nonmonotone derivative-free methods for nonlinear equations. Comput. Optim. Appl. 37, 297–328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yuan, Y.: Subspace methods for large scale nonlinear equations and nonlinear least squares. Optim. Eng. 10, 207–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Fasano, G., Lampariello, F., Sciandrone, M.: A truncated nonmonotone Gauss–Newton method for large-scale nonlinear least-squares problems. Comput. Optim. Appl. 34, 343–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Li, D., Fukushima, M.: A global and superlinear convergent Gauss–Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37, 152–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. Li, D., Qi, L., Zhou, S.: Descent directions of quasi-Newton methods for symmetric nonlinear equations. SIAM J. Numer. Anal. 40, 1763–1774 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg–Marquardt methods for constrained nonlinear equations with strong local convergence properties. J. Comput. Appl. Math. 172, 375–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  57. Bouaricha, A., Schnabel, R.B.: Tensor methods for large sparse systems of nonlinear equations. Math. Program. 82, 377–400 (1998)

    MathSciNet  MATH  Google Scholar 

  58. Cheng, W.: A PRP type method for systems of monotone equations. Math. Comput. Model. 50, 15–20 (2009)

    Article  MATH  Google Scholar 

  59. Yu, G., Guan, L., Chen, W.: Spectral conjugate gradient methods with sufficient descent property for large-scale unconstraned optimization. Optim. Methods Softw. 23, 275–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yuan, G., Wei, Z., Lu, S.: Limited memory BFGS method with backtracking for symmetric nonlinear equations. Math. Comput. Model. 54, 367–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wang, C.W., Wang, Y.J., Xu, C.L.: A projection method for a system of nonlinear monotone equations with convex constraints. Math. Methods Oper. Res. 66, 33–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yu, Z.S., Lian, J., Sun, J., Xiao, Y.H., Liu, L., Li, Z.H.: Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59, 2416–2423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. Li, D., Wang, L.: A modified Fletcher–Reeves-type derivative-free method for symmetric nonlinear equations. Numer. Algebra Control Optim. 1, 71–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Yuan, G., Wei, Z., Zhao, Q.: A modified Polak–Ribière–Polyak conjugate gradient algorithm for large-scale optimization problems. IIE Trans. 46, 397–413 (2014)

    Article  Google Scholar 

  65. Yuan, G., Zhang, M.: A modified Hestenes–Stiefel conjugate gradient algorithm for large-scale optimization. Numer. Funct. Anal. Optim. 34, 914–937 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang, L., Zhou, W.J.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196, 478–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  67. Andrei, N.: Another hybrid conjugate gradient algorithm for unconstrained optimization. Numer. Algorithms 47, 143–156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Li, Q., Li, D.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31, 1625–1635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. Fukushima, M., Qi, L.: A global and superlinearly convergent algorithm for nonsmooth convex minimization. SIAM J. Optim. 6, 1106–1120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  70. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  71. Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program. 62, 261–273 (1993)

    Article  MATH  Google Scholar 

  72. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II. Springer, Berlin (1993)

    MATH  Google Scholar 

  73. Calamai, P.H., Moré, J.J.: Projected gradient methods for linear constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MATH  Google Scholar 

  74. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–245 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  75. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  76. Yuan, G., Wei, Z.: A modified PRP conjugate gradient algorithm with nonmonotone line search for nonsmooth convex optimization problems. J. Appl. Math. Comput. (2011, in press)

  77. Yuan, G., Wei, Z., Li, G.: A modified Polak–Ribière–Polyak conjugate gradient algorithm with nonmonotone line search for nonsmooth convex minimization. J. Comput. Appl. Math. 255, 86–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  78. Lukšan, L., Vlšek, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical Report No. 798. Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2000)

  79. Lukšan, L., Vlšek, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83, 373–391 (1998)

    MATH  Google Scholar 

  80. Polak, E.: The conjugate gradient method in extreme problems. Comput. Math. Math. Phys. 9, 94–112 (1969)

    Article  Google Scholar 

  81. Fukushima, M.: A descent algorithm for nonsmooth convex optimization. Math. Program. 30, 163–175 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  82. Karmitsa, N., Bagirov, A., Mäkelä, M.M.: Comparing different nonsmooth minimization methods and software. Optim. Methods Softw. 27, 131–153 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  83. Kappel, F., Kuntsevich, A.: An implementation of Shor’s r-algorithm. Comput. Optim. Appl. 15, 193–205 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  84. Kuntsevich, A., Kappel, F.: SolvOpt-the Solver for Local Nonlinear Optimization Problems. Karl-Franzens University of Graz, Graz (1997)

    Google Scholar 

  85. Shor, N.Z.: Minimization Methods for Non-Differentiable Functions. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  86. Mäkelä, M.M.: Multiobjective proximal bundle method for nonconvex nonsmooth optimization: Fortran subroutine MPBNGC 2.0. Reports of the Department of Mathematical Information Technology, Series B, Scientific Computing, No. B 13/2003, University of Jyväkylä, Jyväkylä (2003)

  87. Haarala, M., Miettinen, K., Mäkelä, M.M.: Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Math. Program. 109, 181–205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  88. Bagirov, A.M., Karasozen, B., Sezer, M.: Discrete gradient method: a derivative free method for nonsmooth optimization. J. Optim. Theory Appl. 137, 317–334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  89. Bagirov, A.M., Ganjehlou, A.N.: A quasisecant method for minimizing nonsmooth functions. Optim. Methods Softw. 25, 3–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  90. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  91. Moré, J., Garbow, B., Hillström, K.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MATH  Google Scholar 

  92. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6, 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referees and the editor for their valuable comments which greatly improve our paper. The authors would like to thank Postdoctoral Researcher Yajun Xiao of the University of Technology, Sydney, for his assistance in editing this manuscript. This work was supported by the QFRC visitor funds of the University of Technology, Sydney; the study abroad funds for Guangxi talents in China; the Program for Excellent Talents in Guangxi Higher Education Institutions (Grant No. 201261); the Guangxi NSF (Grant No. 2012GXNSFAA053002); and the China NSF (Grant Nos. 11261006 and 11161003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonglin Yuan.

Additional information

Communicated by Ryan P. Russell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Meng, Z. & Li, Y. A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations. J Optim Theory Appl 168, 129–152 (2016). https://doi.org/10.1007/s10957-015-0781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0781-1

Keywords

Mathematics Subject Classification

Navigation