Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 22))

Abstract

We propose an algorithm for solving systems of monotone equations which combines Newton, proximal point, and projection methodologies. An important property of the algorithm is that the whole sequence of iterates is always globally convergent to a solution of the system without any additional regularity assumptions. Moreover, under standard assumptions the local superlinear rate of convergence is achieved. As opposed to classical globalization strategies for Newton methods, for computing the stepsize we do not use linesearch aimed at decreasing the value of some merit function. Instead, linesearch in the approximate Newton direction is used to construct an appropriate hyperplane which separates the current iterate from the solution set. This step is followed by projecting the current iterate onto this hyperplane, which ensures global convergence of the algorithm. Computational cost of each iteration of our method is of the same order as that of the classical damped Newton method. The crucial advantage is that our method is truly globally convergent. In particular, it cannot get trapped in a stationary point of a merit function. The presented algorithm is motivated by the hybrid projection-proximal point method proposed in [25].

Research of the first author is supported by CNPq Grant 300734/95-6 and by PRONEX-Optimization, research of the second author is supported by CNPq Grant 301200/93-9(RN) and by PRONEX-Optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics, 16: 1–3, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  2. D.P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, Massachusetts, 1995.

    Google Scholar 

  3. J.V. Burke and Maijian Qian. The variable metric proximal point algorithm, I: Basic convergence theory, 1996. Department of Mathematics, University of Washington, Seattle, WA.

    Google Scholar 

  4. R.S. Dembo, S.0 Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM Journal of Numerical Analysis, 19: 400–408, 1982.

    MathSciNet  MATH  Google Scholar 

  5. J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, N.J., 1983.

    MATH  Google Scholar 

  6. J. Eckstein and D.P. Bertsekas. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming, 55: 293–318, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Eckstein and M.C. Ferris. Smooth methods of multipliers for cornplementarity problems. Technical Report RRR 27–96, Rutgers Center for Operations Research, Rutgers University, New Brunswick, New Jersey, August 1996. Revised February 1997.

    Google Scholar 

  8. M.C. Ferris. Finite termination of the proximal point algorithm. Mathematical Programming, 50: 359–366, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.N. Iusem and M.V. Solodov. Newton-type methods with generalized distances for constrained optimization. Optimization, 41: 257–278, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Jiang, L. Qi, X. Chen, and D. Sun. Semismoothness and superlinear copnvergence in nonsmooth optimization and nonsmooth equations. In G. Di Pillo and F. Giannessi, editors, Nonlinear Optimization and Applications, pages 197–212. Plenum Press, 1996.

    Google Scholar 

  11. H. Jiang and D. Ralph. Global and local superlinear convergence analysis of Newton-type methods for semismooth equations with smooth least squares. Department of Mathematics, The University of Melbourne, Australia. July 1997.

    Google Scholar 

  12. B. Lemaire. The proximal algorithm. In J.P. Penot, editor, International Series of Numerical Mathematics, pages 73–87. Birkhauser, Basel, 1989.

    Google Scholar 

  13. F.J. Luque. Asymptotic convergence analysis of the proximal point algorithm. SIAM Journal on Control and Optimization, 22: 277–293, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.M. Martínez. Local convergence theory for inexact Newton methods based on structural least-squares updates. Mathematics of Computation, 55: 143–168, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.M. Martinez and L. Qi. Inexact Newton methods for solving nonsm000th equations. Journal of Computational and Applied Mathematics, 60: 127145, 1995.

    Google Scholar 

  16. J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, 1970.

    Google Scholar 

  17. J.-S. Pang and S.A. Gabriel. An inexact NE/SQP method for solving the nonlinear complementarity problem. Computational Optimization and Applications, 1: 67–92, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-S. Pang and L. Qi. Nonsmooth equations: Motivation and algorithms. SIAM Journal on Optimization, 3: 443–465, 1995.

    Article  MathSciNet  Google Scholar 

  19. B.T. Polyak. Introduction to Optimization. Optimization Software, Inc., Publications Division, New York, 1987.

    Google Scholar 

  20. L. Qi. Convergence analysis of some algorithms for solving nonsmooth equations. Mathematics of Operations Research, 18: 227–244, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical Programming, 58: 353–367, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  22. R.T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14: 877–898, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  23. M.V. Solodov and B.F. Svaiter. A new projection method for variational inequality problems. Technical Report B-109, Instituto de Matematica Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro, RJ 22460, Brazil, November 1996. SIAM Journal on Control and Optimization,submitted.

    Google Scholar 

  24. M.V. Solodov and B.F. Svaiter. Forcing strong convergence of proximal point iterations in a Hilbert space, 1997. Mathematical Programming,submitted.

    Google Scholar 

  25. M.V. Solodov and B.F. Svaiter. A hybrid projection - proximal point algorithm. Technical Report B-115, Instituto de Matematica Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro, Ri 22460, Brazil, January 1997. Journal of Convex Analysis,submitted.

    Google Scholar 

  26. T.J. Ypma. Local convergence of inexact Newton methods. SIAM Journal of Numerical Analysis, 21: 583–590, 1984.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Solodov, M.V., Svaiter, B.F. (1998). A Globally Convergent Inexact Newton Method for Systems of Monotone Equations. In: Fukushima, M., Qi, L. (eds) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods. Applied Optimization, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6388-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6388-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4805-2

  • Online ISBN: 978-1-4757-6388-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics