Skip to main content
Log in

A New Schiff Base Chemodosimeter for Fluorescent Imaging of Ferric Ions in Living Cells

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new and efficient chemodosimeter for ferric ions has been developed. The visual and fluorescent behaviors of the compound toward various metal ions were investigated: ferric ions are distinguished from other cations by selective color change and unusual fluorescence enhancement in mixed aqueous solution. Fluorescence microscopy experiments showed that this receptor is effective for detection of Fe3+ in vitro, developing a good image of the biological organelles. The sensing mechanism is shown to involve a hydrolysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566

    Article  PubMed  Google Scholar 

  2. Desvergne J-P, Czarnik AW (1997) Chemosensors of ion and molecule recognition. Springer Science & Business Media

  3. Lin W, Long L, Yuan L, Cao Z, Feng J (2009) A novel ratiometric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore. Anal Chim Acta 634(2):262–266

    Article  CAS  PubMed  Google Scholar 

  4. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205(1):3–40

    Article  CAS  Google Scholar 

  5. Zhang M, Gao Y, Li M, Yu M, Li F, Li L, Zhu M, Zhang J, Yi T, Huang C (2007) A selective turn-on fluorescent sensor for FeIII and application to bioimaging. Tetrahedron Lett 48(21):3709–3712

    Article  CAS  Google Scholar 

  6. Klaassen CD (2013) Casarett and Doull's toxicology: the basic science of poisons. McGraw-Hill, New York

    Google Scholar 

  7. D’Autréaux B, Tucker NP, Dixon R, Spiro S (2005) A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature 437(7059):769–772

    Article  PubMed  Google Scholar 

  8. Lee J-W, Helmann JD (2006) The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440(7082):363–367

    Article  CAS  PubMed  Google Scholar 

  9. Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64(5):1037–1048

    Article  CAS  PubMed  Google Scholar 

  10. Honda K, Casadesus G, Petersen RB, Perry G, Smith MA (2004) Oxidative stress and redox‐active iron in Alzheimer’s Disease. Ann N Y Acad Sci 1012(1):179–182

    Article  CAS  PubMed  Google Scholar 

  11. Li Z, Yu M, Zhang L, Yu M, Liu J, Wei L, Zhang H (2010) A “switching on” fluorescent chemodosimeter of selectivity to Zn2+ and its application to MCF-7 cells. Chem Commun 46(38):7169–7171

    Article  CAS  Google Scholar 

  12. Li Z, Zhang L, Wang L, Guo Y, Cai L, Yu M, Wei L (2011) Highly sensitive and selective fluorescent sensor for Zn 2+/Cu 2+ and new approach for sensing Cu 2+ by central metal displacement. Chem Commun 47(20):5798–5800

    Article  CAS  Google Scholar 

  13. Jung HJ, Singh N, Lee DY, Jang DO (2010) Single sensor for multiple analytes: chromogenic detection of I− and fluorescent detection of Fe 3+. Tetrahedron Lett 51(30):3962–3965

    Article  CAS  Google Scholar 

  14. Praveen L, Reddy M, Varma RL (2010) Dansyl-styrylquinoline conjugate as divalent iron sensor. Tetrahedron Lett 51(50):6626–6629

    Article  CAS  Google Scholar 

  15. Kumar M, Kumar R, Bhalla V (2010) Optical chemosensor for Ag+, Fe3+, and cysteine: information processing at molecular level. Org Lett 13(3):366–369

    Article  PubMed  Google Scholar 

  16. Zhang X, Shiraishi Y, Hirai T (2007) A new rhodamine-based fluorescent chemosensor for transition metal cations synthesized by one-step facile condensation. Tetrahedron Lett 48(31):5455–5459

    Article  CAS  Google Scholar 

  17. Li Z-X, Zhang L-F, Zhao W-Y, Li X-Y, Guo Y-K, Yu M-M, Liu J-X (2011) Fluoranthene-based pyridine as fluorescent chemosensor for Fe 3+. Inorg Chem Commun 14(10):1656–1658

    Article  CAS  Google Scholar 

  18. Smanmoo S, Nasomphan W, Tangboriboonrat P (2011) Highly selective fluorescent chemosensor for Fe 3+ imaging in living cells. Inorg Chem Commun 14(2):351–354

    Article  CAS  Google Scholar 

  19. Ouchetto H, Dias M, Mornet R, Lesuisse E, Camadro J-M (2005) A new route to trihydroxamate-containing artificial siderophores and synthesis of a new fluorescent probe. Bioorg Med Chem 13(5):1799–1803

    Article  CAS  PubMed  Google Scholar 

  20. Xiang Y, Tong A (2006) A new rhodamine-based chemosensor exhibiting selective FeIII-amplified fluorescence. Org Lett 8(8):1549–1552

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh K, Rathi S, Kushwaha R (2013) Sensing of Fe (III) ion via turn-on fluorescence by fluorescence probes derived from 1-naphthylamine. Tetrahedron Lett 54(48):6460–6463

    Article  CAS  Google Scholar 

  22. Quang DT, Kim JS (2010) Fluoro-and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem Rev 110(10):6280–6301

    Article  CAS  Google Scholar 

  23. Du J, Hu M, Fan J, Peng X (2012) Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media. Chem Soc Rev 41(12):4511–4535

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z-H, Devaraj S, Yang C-R, Yen Y-P (2012) A new selective chromogenic and fluorogenic sensor for citrate ion. Sensors Actuators B Chem 174:555–562

    Article  CAS  Google Scholar 

  25. Tsui Y-K, Devaraj S, Yen Y-P (2012) Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: a new selective chromogenic and fluorogenic sensor for cyanide ion. Sensors Actuators B Chem 161(1):510–519

    Article  CAS  Google Scholar 

  26. Bhorge YR, Tsai H-T, Huang K-F, Pape AJ, Janaki SN, Yen Y-P (2014) A new pyrene-based Schiff-base: a selective colorimetric and fluorescent chemosensor for detection of Cu (II) and Fe (III). Spectrochim Acta A Mol Biomol Spectrosc 130:7–12

    Article  CAS  PubMed  Google Scholar 

  27. Devaraj S, Tsui Y-k, Chiang C-Y, Yen Y-P (2012) A new dual functional sensor: highly selective colorimetric chemosensor for Fe 3+ and fluorescent sensor for Mg 2+. Spectrochim Acta A Mol Biomol Spectrosc 96:594–599

    Article  CAS  PubMed  Google Scholar 

  28. Lin C-Y, Huang K-F, Yen Y-P (2013) A new selective colorimetric and fluorescent chemodosimeter for based on hydrolysis of Schiff base. Spectrochim Acta A Mol Biomol Spectrosc 115:552–558

    Article  CAS  PubMed  Google Scholar 

  29. Araujo P (2009) Key aspects of analytical method validation and linearity evaluation. J Chromatogr B 877(23):2224–2234

    Article  CAS  Google Scholar 

  30. Liu J, Lu Y (2007) Rational design of “turn-on” allosteric DNAzyme Catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed 46(40):7587–7590

    Article  CAS  Google Scholar 

  31. Ono A, Togashi H (2004) Highly selective oligonucleotide‐based sensor for mercury (II) in aqueous solutions. Angew Chem Int Ed 43(33):4300–4302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Ministry of Science and Technology, Taiwan, R.O.C., for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Pin Yen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YZ., Bhorge, Y.R., Pape, A.J. et al. A New Schiff Base Chemodosimeter for Fluorescent Imaging of Ferric Ions in Living Cells. J Fluoresc 25, 1331–1337 (2015). https://doi.org/10.1007/s10895-015-1622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1622-1

Keywords

Navigation