Skip to main content
Log in

Pyrene-1-Carboxylate in Water and Glycerol Solutions: Origin of the Change of pK Upon Excitation

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Pyrene-1-carboxy acid has a pK of 4 in the ground state, and a pK of 8 in the excited state. Fluorescence spectra of the acid and base forms are presented as a function of solvent and temperature. Ab initio quantum calculations indicate that the bond between the ring system and the carboxyl group has aromatic character that becomes stronger upon excitation. This stabilization helps to account for the increase in pK upon excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Weller A (1961) Fast reactions of excited molecules. Prog React Kinet 1:187–214

    CAS  Google Scholar 

  2. Ireland JF, Wyatt PAH (1976) Acid-base properties of electronically excited states of organic molecules. In: Gold V, Bethell D (eds) Advances in physical organic chemistry. London, Academic

    Google Scholar 

  3. Shimoni E, Nachliel E, Gutman M (1993) Gaugement of the inner space of the apomyoglobin’s heme binding site by a single free diffusing proton. II. Interaction with a bulk proton. Biophys J 64:480–483

    Article  PubMed  CAS  Google Scholar 

  4. Gepshtein R, Leiderman P, Huppert D, Project E, Nachliel E, Gutman M (2006) Proton antenna effect of the gamma-cyclodextrin outer surface, measured by excited state proton transfer. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110:26354–26364

    PubMed  CAS  Google Scholar 

  5. Roche CJ, Guo F, Friedman JM (2006) Molecular level probing of preferential hydration and its modulation by osmolytes through the use of pyranine complexed to hemoglobin. J Biol Chem 281:38757–38768

    Article  PubMed  CAS  Google Scholar 

  6. Loken MR, Hayes JW, Gohlke JR, Brand L (1972) Excited-state proton transfer as a biological probe. Determination of rate constants by means of nanosecond fluorometry. Biochemistry 11:4779–4786

    Article  PubMed  CAS  Google Scholar 

  7. Rayner DM, Krajcarski, DT, Szabo AG (1978) Excited state acid-base equilibrium of tyrosine. Can J Chem 56:1238–1245

    Article  CAS  Google Scholar 

  8. Martynov IY, Demyashkevich AB, Uzhinov BM, Kuz’min MG (1977) Proton transfer reactions in the excited electronic states of aromatic molecules. Russ Chem Rev Uspekhi Khimii 46:3–31.

    CAS  Google Scholar 

  9. Pines E, Huppert D, Gutman M, Nachliel E, Fishman M (1986) The pOH jump: determination of deprotonation rates of water by 6-methoxyquinoline and acridine. J Phys Chem 90:6366–6370

    Article  CAS  Google Scholar 

  10. Zelent B, Vanderkooi JM, Coleman RG, Gryczynski I, Gryczynski Z (2006) Protonation of excited state pyrene-1-carboxylate by phosphate and organic acids in aqueous solution studied by fluorescence spectroscopy. Biophys J 91(10):3864–3871

    Article  PubMed  CAS  Google Scholar 

  11. Weller A (1952) Quantitative Untersuchungen der Fluoreszenzumwandlung bei Naphtholen. Z Elektrochem 56:662–668

    CAS  Google Scholar 

  12. Agmon N (2005) Elementary steps in excited-state proton transfer. J Phys Chem A 109:13–35

    Article  PubMed  CAS  Google Scholar 

  13. Agmon W, Rettig N, Groth C (2002) Electronic determinants of photoacidity in cyanonaphthols. J Am Chem Soc 124:1089–1096

    Article  PubMed  CAS  Google Scholar 

  14. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Zakrzewski G, Montgomery J, Stratmann R Jr., Buran J, Dapprich S, Millam J, Daniels A, Kudin K, Strain M, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G, Ayala P, Cui Q, Morokuma K, Salvador P, Dannenberg J, Malick D, Rabuck A, Raghavachari K, Foresman J, Cioslowski J, Ortiz J, Baboul A, Stefanov B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R, Fox D, Keith T, Al-Laham M, Peng C, Nanayakkara A, Challacombe M, Gill P, Johnson B, Chen W, Wong M, Andres J, Gonzalez C, Head-Gordon M, Replogle E, Pople J (1998) Gaussian 98. Gaussian, Pittsburgh, PA

    Google Scholar 

  15. Binning RC Jr, Curtiss LA (1990) Compact contracted basis sets for third-row atoms: gallium-krypton. J Comp Chem 11(10):1206–1216

    Article  CAS  Google Scholar 

  16. Hariharan PC, Pople J (1973) Influence of polarization functions on MO hydrogenation energies. Theor Chim Acta 28(3):213–222

    Article  CAS  Google Scholar 

  17. Hariharan PC, Pople J (1974) Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27(1):209–214

    Article  CAS  Google Scholar 

  18. Hehre WJ, Ditchfield R, Pople J (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261

    Article  CAS  Google Scholar 

  19. Gelndening ED, Reed AE, Carpenter JE, WF NBO Version 3.1.

  20. Vanderkooi JM, Callis JB (1974) Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes. Biochemistry 13:4000–4006

    Article  PubMed  CAS  Google Scholar 

  21. Badea MG, Brand L (1978) Time-resolved fluorescence measurements. Methods Enzymol 61:378–425

    Article  Google Scholar 

  22. Vander Donckt E, Dramaix R, Nasielski J, Vogels C (1969) Photochemistry of aromatic compounds. 1. Acid-base properties of singlet and triplet excited states of pyrene derivatives and aza-aromatic compounds. Trans Faraday Soc 65:3258–3263

    Article  CAS  Google Scholar 

  23. Dierksen M, Grimme S (2004) Density functional calculations of the vibronic structure of electronic absorption spectra. J Chem Phys 120:3544–3554

    Article  PubMed  CAS  Google Scholar 

  24. Prabhu NV, Dalosto SD, Sharp KA, Wright WW, Vanderkooi JM (2002) Optical spectra of Fe(II) cytochrome c interpreted using molecular dynamics simulations and quantum mechanical calculations. J Phys Chem B 106:5561–5571

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant PO1 GM48130 and fellowship grant NIH F31 NSO53399 to NVN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane M. Vanderkooi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nucci, N.V., Zelent, B. & Vanderkooi, J.M. Pyrene-1-Carboxylate in Water and Glycerol Solutions: Origin of the Change of pK Upon Excitation. J Fluoresc 18, 41–49 (2008). https://doi.org/10.1007/s10895-007-0233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0233-x

Keywords

Navigation