Skip to main content
Log in

Surfactant-assisted synthesis and characterization of lanthanum oxide nanostructures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By a simple hydrothermal process, we have synthesized lanthanum oxide nanoneedles, nanorods, and nanorod bundles. The porosity of the obtained materials was found. The structure and morphology of the maintained products were studied by XRD, TG/DTA, TEM, and SAED. The porosity was illustrated by N2 absorption–desorption, BET, and BJH curves. Moreover, the influence factors and the mechanism for the morphology control of lanthanum oxide have also been preliminarily presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Fasol G (1998) Science 280:545

    Article  CAS  Google Scholar 

  3. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287:1471

    Article  CAS  Google Scholar 

  4. Duan X, Huang Y, Garwal RA, Lieber CM (2003) Nature 421:241

    Article  CAS  Google Scholar 

  5. Fuhrer MS, Nygard J, Shih L, Forero M, Yoon YG, Mazzoni MSC, Choi HJ (2004) Science 288:494

    Article  Google Scholar 

  6. Ren Huang ZF, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Science 282:1105

    Article  Google Scholar 

  7. Archibald DD, Mann S (1993) Nature 364:430

    Article  CAS  Google Scholar 

  8. Mmorale AM, Lieber CM (1998) Science 279:208

    Article  Google Scholar 

  9. Tang Z, Kotov NA, Giersig M (2002) Science 297:237

    Article  CAS  Google Scholar 

  10. Ma J, Gu Y, Shi L, Chen L, Yang Z, Qian Y (2003) Chem Phys Lett 381:194

    Article  CAS  Google Scholar 

  11. Masuda H, Yamada H, Sayoh M (1997) Appl Phys Lett 71:2770

    Article  CAS  Google Scholar 

  12. Cheng B, Samulski ET (2001) J Mater Chem 11:2901

    Article  CAS  Google Scholar 

  13. Duan XF, Lieber CM (2000) Adv Mater 12:298

    Article  CAS  Google Scholar 

  14. Bjork MT, Ohlsson BJ, Sass T, Persson AI (2002) Nano Lett 2:81

    Article  Google Scholar 

  15. Fodor PS, Tsoi GM, Wenger LE (2002) J Appl Phys 91:8186

    Article  CAS  Google Scholar 

  16. Tai YL, Teng H (2004) Chem Mater 16:338

    Article  CAS  Google Scholar 

  17. Yang Q, Tang K, Wang C, Qian Y, Zhang S (2002) J Phys Chem B 106:9227

    Article  CAS  Google Scholar 

  18. Zhang J, Yang X, Wang D, Li S, Xie Y, Qian Y (2000) Adv Mater 12:1348

    Article  Google Scholar 

  19. Zhang H, Ma X, Li Y, Xu J, Yang D (2003) Chem Phys Lett 377:654

    Article  CAS  Google Scholar 

  20. Zhang H, Li Y, Ma X, Xu J, Yang D (2003) Nanotechnology 14:974

    Article  CAS  Google Scholar 

  21. Vayssieres L (2003) Adv Mater 15:464

    Article  CAS  Google Scholar 

  22. Arakawa H (1994) Bull Chem Soc Jpn 11:21

    Google Scholar 

  23. Andriamasinoro D, Kieffer R, Kiennemann A, Poix P (1993) Appl Catal 106:201

    Article  CAS  Google Scholar 

  24. Rosynek MP, Magnison DT (1977) J Catal 46:402

    Article  CAS  Google Scholar 

  25. Muttay EP, Tsai T, Barnett SA (1999) Nature (Lond) 400:649

    Article  Google Scholar 

  26. Allenspach P, Gasser U (2000) J Alloys Compd 311:1

    Article  CAS  Google Scholar 

  27. Orr GW, Barbour LJ, Atwood JL (1999) Science 285:1049

    Article  CAS  Google Scholar 

  28. Tissue BM (1998) Chem Mater 10:2837

    Article  CAS  Google Scholar 

  29. Terrible D, Trovarelli A, Llorca J, De Leitenburg C, Dolcetti GJ (1998) J Catal 178:299

    Article  Google Scholar 

  30. Wu GS, Xie T, Yuan XY, Cheng BC, Zhang LD (2004) Mater Res Bull 39:1023

    Article  CAS  Google Scholar 

  31. Imanaka N, Masui T, Kato Y (2005) J Solid State Chem 178:395

    Article  CAS  Google Scholar 

  32. Lyons DM, Harman LP, Morris MA (2004) J Mater Chem 14:1976

    Article  CAS  Google Scholar 

  33. Cao JM, Ji HM, Liu JS, Zheng MB, Chang X, Ma XJ, Zhang AM, Xu QH (2005) Mater Lett 59:408

    Article  CAS  Google Scholar 

  34. Yada M, Kitamura H, Ichinose A, Machida M, Kijima T (1999) Angew Chem Int Ed 38:3506

    Article  CAS  Google Scholar 

  35. Vadivel Murugan A, Viswanath AK, Kakada BA, Ravi V, Saaminathan V (2006) J Phys D Appl Phys 39:3974

    Article  Google Scholar 

  36. Chao Y, Quan MJ, Ping LX, Xin W (2003) J Chem Eng Chinese Univ 6:685

    Google Scholar 

  37. Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Siege P, Firouzi A, Chmelka BF, Schuth F, Stucky GD (1994) Chem Mater 6:1176

    Article  CAS  Google Scholar 

  38. Noritaka M, Hiroshi H, Sayaka U, Akira T (2001) Chem Mater 13:179

    Article  Google Scholar 

  39. Ayyappan S, Rao CNR (1997) Chem Commun 575

  40. Israelachvili JN (1985) Physical principles of surfactant self-association into micells, wesicles and microemulsion droplets. In: Mitall KL, Bothorel P (eds) Surfactant in Solution, New York

  41. Vroege GJ, Lekkerkerker HNW (1992) Rep Prog Phys 55:1241

    Article  CAS  Google Scholar 

  42. Kwan S, Kim F, Akana J, Yang PD (2001) Chem Commun 447

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, J., Zhang, S., Lv, S. et al. Surfactant-assisted synthesis and characterization of lanthanum oxide nanostructures. J Mater Sci 42, 9565–9571 (2007). https://doi.org/10.1007/s10853-007-1816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1816-2

Keywords

Navigation