Skip to main content

Advertisement

Log in

PET/MRI in cancer patients: first experiences and vision from Copenhagen

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Combined PET/MRI systems are now commercially available and are expected to change the medical imaging field by providing combined anato-metabolic image information. We believe this will be of particular relevance in imaging of cancer patients. At the Department of Clinical Physiology, Nuclear Medicine & PET at Rigshospitalet in Copenhagen we installed an integrated PET/MRI in December 2011. Here, we describe our first clinical PET/MR cases and discuss some of the areas within oncology where we envision promising future application of integrated PET/MR imaging in clinical routine. Cases described include brain tumors, pediatric oncology as well as lung, abdominal and pelvic cancer. In general the cases show that PET/MRI performs well in all these types of cancer when compared to PET/CT. However, future large-scale clinical studies are needed to establish when to use PET/MRI. We envision that PET/MRI in oncology will prove to become a valuable addition to PET/CT in diagnosing, tailoring and monitoring cancer therapy in selected patient populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kjaer A (2006) Molecular imaging of cancer using PET and SPECT. Adv Exp Med Biol 587:277–284

    Article  PubMed  Google Scholar 

  2. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2(9):683–693

    Article  PubMed  CAS  Google Scholar 

  3. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving Considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  PubMed  CAS  Google Scholar 

  4. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379

    PubMed  CAS  Google Scholar 

  5. Townsend DW, Beyer T (2002) A combined PET/CT scanner: the path to true image fusion. Br J Radiol 75 Spec No:S24–S30

    PubMed  Google Scholar 

  6. Delbeke D, Schoder H, Martin WH, Wahl RL (2009) Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Sem Nucl Med 39(5):308–340

    Article  Google Scholar 

  7. Thoeny HC, Ross BD (2010) Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 32(1):2–16

    Article  PubMed  Google Scholar 

  8. Padhani AR, Koh DM, Collins DJ (2011) Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 261(3):700–718

    Article  PubMed  Google Scholar 

  9. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Rustin GJ, Taouli B, Choyke PL (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125

    PubMed  CAS  Google Scholar 

  10. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922

    Article  PubMed  Google Scholar 

  11. Kalemis A, Delattre BM, Heinzer S (2012) Sequential whole-body PET/MR scanner: concept, clinical use, and optimisation after two years in the clinic. The manufacturer’s perspective. Magn Reson Mater Phy. doi:10.1007/s10334-012-0330-y

    Google Scholar 

  12. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G (2012) Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med 53(6):928–938

    Article  PubMed  Google Scholar 

  13. Hutchings M, Loft A, Hansen M, Pedersen LM, Buhl T, Jurlander J, Buus S, Keiding S, D’Amore F, Boesen AM, Berthelsen AK, Specht L (2006) FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 107(1):52–59

    Article  PubMed  CAS  Google Scholar 

  14. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Muller HW, Zilles K, Coenen HH, Langen KJ (2005) O-(2-[18F]fluoroethyl)-l-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128(Pt 3):678–687

    Article  PubMed  Google Scholar 

  15. Popperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, Gildehaus FJ, Kretzschmar HA, Tonn JC, Tatsch K (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34(12):1933–1942

    Article  PubMed  Google Scholar 

  16. Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfinos JG, Zagzag D, Johnson G (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247(2):490–498

    Article  PubMed  Google Scholar 

  17. Feigl GC, Safavi-Abbasi S, Gharabaghi A, Gonzalez-Felipe V, El Shawarby A, Freund HJ, Samii M (2008) Real-time 3T fMRI data of brain tumour patients for intra-operative localization of primary motor areas. Eur J Surg Oncol 34(6):708–715

    Article  PubMed  CAS  Google Scholar 

  18. Rachinger W, Goetz C, Popperl G, Gildehaus FJ, Kreth FW, Holtmannspotter M, Herms J, Koch W, Tatsch K, Tonn J-C (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57(3):505–511

    Article  PubMed  Google Scholar 

  19. Yaman E, Buyukberber S, Benekli M, Oner Y, Coskun U, Akmansu M, Ozturk B, Kaya AO, Uncu D, Yildiz R (2010) Radiation induced early necrosis in patients with malignant gliomas receiving temozolomide. Clin Neurol Neurosurg 112(8):662–667

    Article  PubMed  Google Scholar 

  20. Ganslandt O, Stadlbauer A, Fahlbusch R, Kamada K, Buslei R, Blumcke I, Moser E, Nimsky C (2005) Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery 56(2 Suppl):291–298

    Article  PubMed  Google Scholar 

  21. Stadlbauer A, Ganslandt O, Buslei R, Hammen T, Gruber S, Moser E, Buchfelder M, Salomonowitz E, Nimsky C (2006) Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 240(3):803–810

    Article  PubMed  Google Scholar 

  22. Stadlbauer A, Gruber S, Nimsky C, Fahlbusch R, Hammen T, Buslei R, Tomandl B, Moser E, Ganslandt O (2006) Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 238(3):958–969

    Article  PubMed  Google Scholar 

  23. Stadlbauer A, Nimsky C, Buslei R, Salomonowitz E, Hammen T, Buchfelder M, Moser E, Ernst-Stecken A, Ganslandt O (2007) Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. NeuroImage 34(3):949–956

    Article  PubMed  Google Scholar 

  24. Gruner JM, Paamand R, Kosteljanetz M, Broholm H, Hojgaard L, Law I (2012) Brain perfusion CT compared with (15)O-H (2)O PET in patients with primary brain tumours. Eur J Nucl Med Mol Imaging 39(11):1691–1701

    Article  PubMed  Google Scholar 

  25. Jansen NL, Graute V, Armbruster L, Suchorska B, Lutz J, Eigenbrod S, Cumming P, Bartenstein P, Tonn JC, Kreth FW, la Fougere C (2012) MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 39(6):1021–1029

    Article  PubMed  CAS  Google Scholar 

  26. Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, Muigg A, Virgolini IJ, Staffen W, Trinka E, Gotwald T, Jacobs AH, Stockhammer G (2011) O-(2–18F-fluoroethyl)-l-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 52(6):856–864

    Article  PubMed  CAS  Google Scholar 

  27. Grosu AL, Weber WA, Franz M, Stark S, Piert M, Thamm R, Gumprecht H, Schwaiger M, Molls M, Nieder C (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63(2):511–519

    Article  PubMed  CAS  Google Scholar 

  28. Thorwarth D, Muller AC, Pfannenberg C, Beyer T (2012) Combined PET/MR Imaging using (68)Ga-DOTATOC for radiotherapy treatment planning in meningioma patients. Recent Result Cancer Res 194:425–439

    Article  Google Scholar 

  29. Kumar R, Shandal V, Shamim SA, Halanaik D, Malhotra A (2010) Clinical applications of PET and PET/CT in pediatric malignancies. Expert Rev Anticancer Ther 10(5):755–768

    Article  PubMed  Google Scholar 

  30. Purz S, Mauz-Korholz C, Korholz D, Hasenclever D, Krausse A, Sorge I, Ruschke K, Stiefel M, Amthauer H, Schober O, Kranert WT, Weber WA, Haberkorn U, Hundsdorfer P, Ehlert K, Becker M, Rossler J, Kulozik AE, Sabri O, Kluge R (2011) [18F]Fluorodeoxyglucose positron emission tomography for detection of bone marrow involvement in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol 29(26):3523–3528

    Article  PubMed  Google Scholar 

  31. Kluge R, Korholz D (2011) [Role of FDG-PET in staging and therapy of children with Hodgkin lymphoma]. Die Bedeutung des FDG-PET fur die Stadieneinteilung und Therapie des Hodgkin-Lymphoms im Kindesalter. Klin Padiatr 223(6):315–319

    Article  PubMed  CAS  Google Scholar 

  32. Fahey FH, Treves ST, Adelstein SJ (2011) Minimizing and communicating radiation risk in pediatric nuclear medicine. J Nucl Med 52(8):1240–1251

    PubMed  Google Scholar 

  33. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Dosimetry E, Paediatrics C (2008) The new EANM paediatric dosage card: additional notes with respect to F-18. Eur J Nucl Med Mol Imaging 35(9):1666–1668

    Article  PubMed  CAS  Google Scholar 

  34. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F, Dosimetry E, Paediatrics C (2007) The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 34(5):796–798

    Article  PubMed  CAS  Google Scholar 

  35. Kaste SC (2011) Imaging pediatric bone sarcomas. Radiol Clin North Am 49(4):749–765, vi–vii

    Google Scholar 

  36. Krohmer S, Sorge I, Krausse A, Kluge R, Bierbach U, Marwede D, Kahn T, Hirsch W (2010) Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol 74(1):256–261

    Article  PubMed  CAS  Google Scholar 

  37. Biederer J, Hintze C, Fabel M (2008) MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging 8:125–130

    Article  PubMed  Google Scholar 

  38. Kwee TC, Takahara T, Vermoolen MA, Bierings MB, Mali WP, Nievelstein RA (2010) Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol 40(10):1592–1602, quiz 1720–1591

    Google Scholar 

  39. Lin C, Itti E, Luciani A, Haioun C, Meignan M, Rahmouni A (2010) Whole-body diffusion-weighted imaging in lymphoma. Cancer imaging 10 Spec no A:S172–S178

    Article  PubMed  CAS  Google Scholar 

  40. Willowson KP, Bailey EA, Bailey DL (2012) A retrospective evaluation of radiation dose associated with low dose FDG protocols in whole-body PET/CT. Australas Phys Eng Sci Med 35(1):49–53

    Article  PubMed  Google Scholar 

  41. Boss A, Bisdas S, Kolb A, Hofmann M, Ernemann U, Claussen CD, Pfannenberg C, Pichler BJ, Reimold M, Stegger L (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51(8):1198–1205

    Article  PubMed  Google Scholar 

  42. Schwenzer NF, Schmidt H, Claussen CD (2012) Whole-body MR/PET: applications in abdominal imaging. Abdom Imaging 37(1):20–28

    Article  PubMed  CAS  Google Scholar 

  43. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Furst S, Martinez-Moller A, Nekolla SG, Ziegler S, Ganter C, Rummeny EJ, Schwaiger M (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53(6):845–855

    Article  PubMed  Google Scholar 

  44. Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging 36(Suppl 1):S113–S120

    Article  PubMed  Google Scholar 

  45. Chang Q, Wu N, Ouyang H, Huang Y (2012) Diffusion-weighted magnetic resonance imaging of lung cancer at 3.0 T: a preliminary study on monitoring diffusion changes during chemoradiation therapy. Clin Imaging 36(2):98–103

    Article  PubMed  Google Scholar 

  46. Sharma U, Baek HM, Su MY, Jagannathan NR (2011) In vivo 1H MRS in the assessment of the therapeutic response of breast cancer patients. NMR Biomed 24(6):700–711

    PubMed  Google Scholar 

  47. Denholt CL, Binderup T, Stockhausen MT, Poulsen HS, Spang-Thomsen M, Hansen PR, Gillings N, Kjaer A (2011) Evaluation of 4-[18F]fluorobenzoyl-FALGEA-NH2 as a positron emission tomography tracer for epidermal growth factor receptor mutation variant III imaging in cancer. Nucl Med Biol 38(4):509–515

    Article  PubMed  CAS  Google Scholar 

  48. Pfeifer A, Knigge U, Mortensen J, Oturai P, Berthelsen AK, Loft A, Binderup T, Rasmussen P, Elema D, Klausen TL, Holm S, von Benzon E, Hojgaard L, Kjaer A (2012) Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med 53(8):1207–1215

    Article  PubMed  CAS  Google Scholar 

  49. Jensen MM, Erichsen KD, Bjorkling F, Madsen J, Jensen PB, Hojgaard L, Sehested M, Kjaer A (2010) Early detection of response to experimental chemotherapeutic Top216 with [18F]FLT and [18F]FDG PET in human ovary cancer xenografts in mice. PLoS One 5(9):e12965

    Article  PubMed  Google Scholar 

  50. Dunet V, Rossier C, Buck A, Stupp R, Prior JO (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 53(2):207–214

    Article  PubMed  CAS  Google Scholar 

  51. Hansen AE, Kristensen AT, Law I, McEvoy FJ, Kjaer A, Engelholm SA (2012) Multimodality functional imaging of spontaneous canine tumors using 64Cu-ATSM and 18FDG PET/CT and dynamic contrast enhanced perfusion CT. Radiother Oncol 102(3):424–428

    Article  PubMed  Google Scholar 

  52. Oxboel J, Schoedt-Eskesen C, El-Ali H, Madsen J, Kjaer A (2012) 64Cu-NODAGA-c(RGDyK) is a promising new angiogenesis PET tracer: correlation between tumor uptake and integrin-aVß3 expression in human neuroendocrine tumor xenografts. Int J Mol Imaging 2012:379807

    PubMed  Google Scholar 

  53. Persson M, Madsen J, Ostergaard S, Jensen MM, Jorgensen JT, Juhl K, Lehmann C, Ploug M, Kjaer A (2012) Quantitative PET of human urokinase-type plasminogen activator receptor with 64Cu-DOTA-AE105: implications for visualizing cancer invasion. J Nucl Med 53(1):138–145

    Article  PubMed  CAS  Google Scholar 

  54. Persson M, Madsen J, Ostergaard S, Ploug M, Kjaer A (2012) 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers. Nucl Med Biol 39(4):560–569

    Article  PubMed  CAS  Google Scholar 

  55. Sattler B, Jochimsen T, Barthel H, Sommerfeld K, Stumpp P, Hoffmann KT, Gutberlet M, Villringer A, Kahn T, Sabri O (2012) Physical and organizational provision for installation, regulatory requirements and implementation of a simultaneous hybrid PET/MR-imaging system in an integrated research and clinical setting. Magn Reson Mater Phy. doi:10.1007/s10334-012-0347-2

    Google Scholar 

  56. Keller SH, Holm S, Hansen AE, Sattler B, Andersen F, Klausen TL, Hojgaard L, Kjaer A, Beyer T (2012) Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI. Magn Reson Mater Phy. doi:10.1007/s10334-012-0345-4

    Google Scholar 

  57. Wagenknecht G, Kaiser HJ, Mottagny FM, Herzog H (2012) MRI for attenuation correction in PET: methods and challenges. Magn Reson Mater Phy. doi:10.1007/s10334-012-0353-4

    Google Scholar 

Download references

Acknowledgments

The excellent work of Karin Stahr and Jakúp Poulsen performing the PET/MRI scans and the helpful comments and discussions with Thomas Beyer are gratefully acknowledged. We are grateful to the John and Birthe Meyer foundation for donation of the PET/MRI system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kjær.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjær, A., Loft, A., Law, I. et al. PET/MRI in cancer patients: first experiences and vision from Copenhagen. Magn Reson Mater Phy 26, 37–47 (2013). https://doi.org/10.1007/s10334-012-0357-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0357-0

Keywords

Navigation