Skip to main content

Advertisement

Log in

Whole-body MR/PET: applications in abdominal imaging

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Over the last few decades it has been shown that novel technologies and technological progress rapidly change the working environment of radiologists and nuclear medicine physicians. Thus, new possibilities, e.g., in tumor staging and therapy monitoring, but also new challenges arise. Recently, it could be shown that the integration of magnetic resonance imaging (MRI) and positron emission tomography (PET) is technically possible. The evolvement of new dedicated hybrid MR/PET systems for whole-body imaging in humans offers new potential in multimodal imaging. Especially simultaneous measurement of PET and MRI datasets allows for insights in metabolic and functional processes, particularly in oncologic demands, but also in cardiovascular and cerebral imaging. In this work-in-progress review article, a technical summary including the method-inherent challenges are given. Furthermore, possible clinical applications and research interests are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Catana C, Procissi D, Wu Y, et al. (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA 105:3705–3710

    Article  PubMed  CAS  Google Scholar 

  2. Judenhofer MS, Wehrl HF, Newport DF, et al. (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  PubMed  CAS  Google Scholar 

  3. Pichler BJ, Judenhofer MS, Catana C, et al. (2006) Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47:639–647

    PubMed  Google Scholar 

  4. Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36(Suppl 1):S56–S68

    Article  PubMed  Google Scholar 

  5. Schlemmer HP, Pichler BJ, Schmand M, et al. (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248:1028–1035

    Article  PubMed  Google Scholar 

  6. Bisdas S, Nagele T, Schlemmer HP, et al. (2010) Switching on the lights for real-time multimodality tumor neuroimaging: The integrated positron-emission tomography/MR imaging system. AJNR Am J Neuroradiol 31:610–614

    Article  PubMed  CAS  Google Scholar 

  7. Boss A, Bisdas S, Kolb A, et al. (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51:1198–1205

    Article  PubMed  Google Scholar 

  8. Boss A, Kolb A, Hofmann M, et al. (2010) Diffusion tensor imaging in a human PET/MR hybrid system. Invest Radiol 45:270–274

    Article  PubMed  Google Scholar 

  9. Boss A, Stegger L, Bisdas S, et al. (2011) Feasibility of simultaneous PET/MR imaging in the head and upper neck area. Eur Radiol 21(7):1439–1446

    Article  PubMed  Google Scholar 

  10. Schlemmer HP, Pichler BJ, Krieg R, Heiss WD (2009) An integrated MR/PET system: prospective applications. Abdom Imaging 34:668–674

    Article  PubMed  Google Scholar 

  11. Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23S

    Article  PubMed  Google Scholar 

  12. Kolb A, Lorenz E, Judenhofer MS, et al. (2010) Evaluation of Geiger-mode APDs for PET block detector designs. Phys Med Biol 55:1815–1832

    Article  PubMed  Google Scholar 

  13. Pichler B, Lorenz E, Mirzoyan R, et al. (1997) Performance test of a LSO-APD PET module in a 9.4 Tesla magnet. IEEE Nucl Sci Symp 2:1237–1239

    CAS  Google Scholar 

  14. Probst S, Seltzer A, Spieler B, Chachoua A, Friedman K (2011) The appearance of cardiac metastasis from squamous cell carcinoma of the lung on F-18 FDG PET/CT and post hoc PET/MRI. Clin Nucl Med 36:311–312

    Article  PubMed  Google Scholar 

  15. Small GR, Ruddy TD (2011) PET imaging of aortic atherosclerosis: Is combined imaging of plaque anatomy and function an amaranthine quest or conceivable reality? J Nucl Cardiol 18:717–728

    Article  PubMed  Google Scholar 

  16. Vermeltfoort IA, Raijmakers PG, Lubberink M, et al. (2011) Feasibility of subendocardial and subepicardial myocardial perfusion measurements in healthy normals with (15)O-labeled water and positron emission tomography. J Nucl Cardiol 18:650–656

    Article  PubMed  Google Scholar 

  17. Ewelt C, Floeth FW, Felsberg J, et al. (2011) Finding the anaplastic focus in diffuse gliomas: The value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence. Clin Neurol Neurosurg 113:541–547

    Article  PubMed  Google Scholar 

  18. Makino K, Hirai T, Nakamura H, et al. (2011) Does adding FDG-PET to MRI improve the differentiation between primary cerebral lymphoma and glioblastoma? Observer performance study. Ann Nucl Med 25:432–438

    Article  PubMed  Google Scholar 

  19. Rottenburger C, Hentschel M, Kelly T, et al. (2011) Comparison of C-11 methionine and C-11 choline for PET imaging of brain metastases: a prospective pilot study. Clin Nucl Med 36:639–642

    Article  PubMed  Google Scholar 

  20. Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861–872

    Article  PubMed  Google Scholar 

  21. Cai W, Chen K, Mohamedali KA, et al. (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056

    PubMed  CAS  Google Scholar 

  22. Chen K, Cai W, Li ZB, Wang H, Chen X (2009) Quantitative PET imaging of VEGF receptor expression. Mol Imaging Biol 11:15–22

    Article  PubMed  Google Scholar 

  23. Sorensen M, Frisch K, Bender D, Keiding S (2011) The potential use of 2-[(18)F]fluoro-2-deoxy-d:-galactose as a PET/CT tracer for detection of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 38:1723–1731

    Google Scholar 

  24. Coombs BD, Szumowski J, Coshow W (1997) Two-point Dixon technique for water-fat signal decomposition with B0 inhomogeneity correction. Magn Reson Med 38:884–889

    Article  PubMed  CAS  Google Scholar 

  25. Martinez-Moller A, Souvatzoglou M, Delso G, et al. (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526

    Article  PubMed  Google Scholar 

  26. Hofmann M, Steinke F, Scheel V, et al. (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883

    Article  PubMed  Google Scholar 

  27. Hofmann M, Bezrukov I (2011) MR-based attenuation correction for whole-body PET/MR—quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52:1392–1399

    Google Scholar 

  28. Kitajima K, Nakamoto Y, Okizuka H, et al. (2008) Accuracy of whole-body FDG-PET/CT for detecting brain metastases from non-central nervous system tumors. Ann Nucl Med 22:595–602

    Article  PubMed  Google Scholar 

  29. Dellestable P, Granel-Brocard F, Rat AC, et al. (2011) Impact of whole body magnetic resonance imaging (MRI) in the management of melanoma patients, in comparison with positron emission tomography/computed tomography (TEP/CT) and CT. Ann Dermatol Venereol 138:377–383

    Article  PubMed  CAS  Google Scholar 

  30. Aukema TS, Olmos RA, Korse CM, et al. (2010) Utility of FDG PET/CT and brain MRI in melanoma patients with increased serum S-100B level during follow-up. Ann Surg Oncol 17:1657–1661

    Article  PubMed  Google Scholar 

  31. Pfannenberg C, Aschoff P, Schanz S, et al. (2007) Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 43:557–564

    Article  PubMed  Google Scholar 

  32. Punwani S, Taylor SA, Bainbridge A, et al. (2010) Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology 255:182–190

    Article  PubMed  Google Scholar 

  33. Wu X, Kellokumpu-Lehtinen PL, Pertovaara H, et al. (2011) Diffusion-weighted MRI in early chemotherapy response evaluation of patients with diffuse large B-cell lymphoma—a pilot study: comparison with 2-deoxy-2-fluoro-d-glucose-positron emission tomography/computed tomography. NMR Biomed. doi:10.1002/nbm.1689

  34. van Ufford HM, Kwee TC, Beek FJ, et al. (2011) Newly diagnosed lymphoma: initial results with whole-body T1-weighted, STIR, and diffusion-weighted MRI compared with 18F-FDG PET/CT. AJR Am J Roentgenol 196:662–669

    Article  PubMed  Google Scholar 

  35. Lutje S, de Rooy JW, Croockewit S, et al. (2009) Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma. Ann Hematol 88:1161–1168

    Article  PubMed  Google Scholar 

  36. Lin C, Luciani A, Itti E, Haioun C, Rahmouni A (2007) Whole body MRI and PET/CT in haematological malignancies. Cancer Imaging 7 Spec No A:S88–S93

    Article  PubMed  Google Scholar 

  37. Shortt CP, Gleeson TG, Breen KA, et al. (2009) Whole-Body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 192:980–986

    Article  PubMed  Google Scholar 

  38. Heusner T, Golitz P, Hamami M, et al. (2011) “One-stop-shop” staging: should we prefer FDG-PET/CT or MRI for the detection of bone metastases? Eur J Radiol 78:430–435

    Article  PubMed  Google Scholar 

  39. Takenaka D, Ohno Y, Matsumoto K, et al. (2009) Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 30:298–308

    Article  PubMed  Google Scholar 

  40. Luboldt W, Kufer R, Blumstein N, et al. (2008) Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 249:1017–1025

    Article  PubMed  Google Scholar 

  41. Eschmann SM, Pfannenberg AC, Rieger A, et al. (2007) Comparison of 11C-choline-PET/CT and whole body-MRI for staging of prostate cancer. Nuklearmedizin 46:161–168 (quiz N147-168)

    PubMed  CAS  Google Scholar 

  42. Yi CA, Shin KM, Lee KS, et al. (2008) Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology 248:632–642

    Article  PubMed  Google Scholar 

  43. Ohno Y, Koyama H, Onishi Y, et al. (2008) Non-small cell lung cancer: whole-body MR examination for M-stage assessment–utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 248:643–654

    Article  PubMed  Google Scholar 

  44. Seemann MD, Meisetschlaeger G, Gaa J, Rummeny EJ (2006) Assessment of the extent of metastases of gastrointestinal carcinoid tumors using whole-body PET, CT, MRI, PET/CT and PET/MRI. Eur J Med Res 11:58–65

    PubMed  Google Scholar 

  45. Ambrosini V, Campana D, Bodei L, et al. (2010) 68 Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med 51:669–673

    Article  PubMed  Google Scholar 

  46. Mayo SC, de Jong MC, Bloomston M, et al. (2011) Surgery versus intra-arterial therapy for neuroendocrine liver metastasis: a multicenter international analysis. Ann Surg Oncol. doi:10.1245/s10434-011-1832-y

  47. Ruf J, Heuck F, Schiefer J, et al. (2010) Impact of Multiphase 68 Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology 91:101–109

    Article  PubMed  CAS  Google Scholar 

  48. Sarmiento JM, Que FG (2003) Hepatic surgery for metastases from neuroendocrine tumors. Surg Oncol Clin N Am 12:231–242

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Schwenzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwenzer, N.F., Schmidt, H. & Claussen, C.D. Whole-body MR/PET: applications in abdominal imaging. Abdom Imaging 37, 20–28 (2012). https://doi.org/10.1007/s00261-011-9809-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-011-9809-7

Keywords

Navigation