Skip to main content
Log in

Mortality of urban pines in Helsinki explored using tree rings and climate records

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The mortality of Scots pine trees in and around Helsinki has been reported in recent years, but the causalities of these deaths have not so far been rigorously examined. Tree-ring analyses have previously shown to effectively reveal historical growth variability and thus hint at the stress factors behind tree mortality. Here, we analyzed the tree rings of pines in two tree classes (living and dead) from an urban park in Helsinki to reveal their growth variations and to examine the obtained chronologies along with climatic data. Guided by tree-ring information, the pine growth over the past century could be divided into four episodes: average growth conditions during the first half of the twentieth century, a suppressed growth period during the 1950s and 1960s, a growth release since the mid-1970s, and a period of recent mortality. The two tree classes became particularly differentiated during the release period in that the growth of surviving pines underwent a more positive and abrupt growth anomaly in comparison to dead pines. The survival of pines could also be linked to their sensitivity to droughts in a long-term context: The growth of still-living pines showed a statistically significant moisture sensitivity over the second half of the century only. The period 2002–2003 (coinciding with drought) was observed as a dendrochronologically dated episode with a 40% mortality. Overall, the results point to the importance of tree competitive strength and climate as predisposing and inciting/contributing factors behind the tree mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr AC 19:716–723

    Article  Google Scholar 

  • Aniol RW (1983) Tree-ring analysis using CATRAS. Dendrochronologia 1:45–53

    Google Scholar 

  • Bigler C, Bugmann H (2004) Predicting the time of tree death using dendrochronological data. Ecol Appl 14:902–914

    Article  Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Article  Google Scholar 

  • Biondi F (1997) Evolutionary and moving response functions in dendroclimatology. Dendrochronologia 15:139–150

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  • Briffa KR, Melvin TM (2011) A closer look at regional curve standardization of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology, progress and prospects. Springer, Dordrecht, pp 113–145

    Google Scholar 

  • Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–740

    Article  Google Scholar 

  • Cherubini P, Fontana G, Rigling D, Dobbertin M, Brang P, Innes JL (2002) Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. J Ecol 90:839–850

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  PubMed  CAS  Google Scholar 

  • Cook ER (1985) A time-series analysis approach to tree-ring standardization. Dissertation, University of Arizona, Tucson

  • Cook ER (1987) The decomposition of tree-ring series for environmental studies. Tree Ring Bull 47:37–59

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53

    Google Scholar 

  • De Luis M, Novak K, Čufar K, Raventós J (2009) Size mediated climate–growth relationships in Pinus halepensis and Pinus pinea. Trees 23:1065–1073

    Article  Google Scholar 

  • Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333

    Article  Google Scholar 

  • Donner J (2005) Annalan huvilan historia. In: Seppälä H, Frondelius S (eds) Villa Anneberg—Annalan huvila. Porvarisidyllistä kaupunkilaisten keitaaksi, Hyötykasviyhdistys ry—Puutarhataiteen seura ry (F.G. Lönnberg), Helsinki, pp 52–79

  • Dwyer J, McPherson EG, Schroeder H, Rowntree R (1992) Assessing the benefits and costs of the urban forest. J Arboric 18:227–234

    Google Scholar 

  • Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23:121–132

    Article  Google Scholar 

  • Fink AH, Bruecher T, Krueger A, Leckebusch GC, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59:209–216

    Article  Google Scholar 

  • Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process. Bioscience 37:550–556

    Article  Google Scholar 

  • Fritts HC (1962) An approach to dendroclimatology: screening by means of multiple regression techniques. J Geophys Res 67:1413–1420

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188

    Article  Google Scholar 

  • Fritts HC, Mosimann JE, Bottorff CP (1969) A revised computer program for standardizing tree-ring series. Tree Ring Bull 29:15–20

    Google Scholar 

  • Fritts HC, Blasing TJ, Hayden BP, Kutzbach JE (1971) Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate. J Appl Meteorol 10:845–864

    Article  Google Scholar 

  • Helama S, Lindholm M (2003) Droughts and rainfall in south-eastern Finland since AD 874, inferred from Scots pine ring-widths. Boreal Environ Res 8:171–183

    Google Scholar 

  • Helama S, Salminen H, Timonen M, Varmola M (2008) Dendroclimatological analysis of seeded and thinned Scots pine (Pinus sylvestris L.) stands at the coniferous timberline. New For 35:267–284

    Article  Google Scholar 

  • Helama S, Läänelaid A, Raisio J, Tuomenvirta H (2009) Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant Soil 319:163–174

    Article  CAS  Google Scholar 

  • Henttonen H (1984) The dependence of annual ring indices on some climatic factors. Acta For Fenn 186:1–38

    Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–75

    Google Scholar 

  • Holmes RL, Adams RK, Fritts HC (1986) Tree-ring chronologies of Western North America: California, Eastern Oregon and Northern Great Basin with Procedures Used in the Chronology Development Work Including Users Manuals for Computer Programs COFECHA and ARSTAN. Chronology Series IV. Laboratory of Tree- Ring Research, University of Arizona, Tucson, USA

  • Holopainen J, Helama S, Timonen M (2006a) Plant phenological data and tree-rings as palaeoclimate indicators since AD 1750 in SW Finland. Int J Biometeorol 51:61–72

    Article  PubMed  Google Scholar 

  • Holopainen M, Leino O, Kämäri H, Talvitie M (2006b) Drought damage in the park forests of the city of Helsinki. Urban For Urban Green 4:75–83

    Article  Google Scholar 

  • Hordo M, Metslaid S, Kiviste A (2009) Response of Scots pine (Pinus sylvestris L.) radial growth to climate factors in Estonia. Baltic Forestry 15:195–205

    Google Scholar 

  • Hordo M, Henttonen HM, Mäkinen H, Helama S, Kiviste A (2011) Annual growth variation of Scots pine in Estonia and Finland. Baltic For 17(1)

  • Läänelaid A (2000) Five pine samples represent climate impact as well as eleven pines. Univ Joensuu Fac For Res Notes 108:119–128

    Google Scholar 

  • Läänelaid A, Eckstein D (2003) Development of a tree-ring chronology of Scots pine (Pinus sylvestris L.) for Estonia as a dating tool and climatic proxy. Baltic For 9:82–86

    Google Scholar 

  • Laitakari E (1920) Untersuchungen über die Einwirkung der Witterungsverhältnisse auf den Längen-und Dickenwachstum der Kiefer. Acta For Fenn 17:1–57

    Google Scholar 

  • Leikola M (1969) On the termination of diameter growth of Scots pine in old age in northernmost Finnish Lapland. Silva Fenn 3:50–61

    Google Scholar 

  • Lombardi F, Cherubini P, Lasserre B, Tognetti R, Marchetti M (2008) Tree rings used to assess time since death of deadwood of different decay classes in beech and silver fir forests in the central Apennines (Molise, Italy). Can J For Res 38:821–833

    Article  Google Scholar 

  • Mandre M, Lukjanova A, Pärn H, Kõresaar K (2010) State of Scots pine (Pinus sylvestris L.) under nutrient and water deficit on coastal dunes of the Baltic Sea. Trees 24:1073–1085

    Google Scholar 

  • Manion PD (1991) Tree disease concepts, 2nd edn. Prentice Hall, Inc, Englewood Cliffs

    Google Scholar 

  • Martín-Benito D, Cherubini P, del Río M, Cañellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373

    Article  Google Scholar 

  • Martínez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. Fort Ecol Manag 161:247–256

    Article  Google Scholar 

  • Martínez-Vilalta J, Sala A, Piñol J (2004) The hydraulic architecture of Pinaceae—a review. Plant Ecol 171:3–13

    Article  Google Scholar 

  • Monserud RA (1986) Time-series analyses of tree-ring chronologies. For Sci 32:349–372

    Google Scholar 

  • Mosteller F, Tukey JW (1977) Data analysis and regression: a second course in statistics. Addison-Wesley, Reading

    Google Scholar 

  • Oberhuber W (2001) The role of climate in the mortality of Scots pine (Pinus sylvestris L.) exposed to soil dryness. Dendrochronologia 19:45–55

    Google Scholar 

  • Oberhuber W, Kofler W (2000) Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol 146:231–240

    Article  Google Scholar 

  • Oberhuber W, Stumböck M, Kofler W (1998) Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13:19–27

    Google Scholar 

  • Ogle K, Whitham TG, Cobb NS (2000) Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecology 81:3237–3243

    Article  Google Scholar 

  • Ozolinčius R, Stakėnas V, Varnagirytė-Kabašinskienė I, Buožytė R (2009) Artificial drought in Scots pine stands: effects on soil, ground vegetation and tree condition. Ann Bot Fenn 46:299–307

    Google Scholar 

  • Pedersen BS (1998) The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79:79–93

    Article  Google Scholar 

  • Peet RK, Christensen NL (1987) Competition and tree death. Bioscience 37:586–595

    Article  Google Scholar 

  • Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manag 242:688–699

    Article  Google Scholar 

  • Pouttu A, Dobbertin M (2000) Needle-retention and density patterns in Pinus sylvestris in the Rhone Valley of Switzerland: comparing results of the needle-trace method with visual defoliation assessments. Can J For Res 30:1973–1982

    Article  Google Scholar 

  • Ranta A, Nummi-Karttunen M, Karttunen A (2005) Annala, Rakkaudesta puutarhanhoitoon. Edita, Helsinki

    Google Scholar 

  • Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kroppe JP, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:569–577

    Article  Google Scholar 

  • Río M, Calama R, Cañellas I, Roig S, Montero G (2008) Thinning intensity and growth response in SW-European Scots pine stands. Ann For Sci 65:308

    Article  Google Scholar 

  • Rouvinen S, Kuuluvainen T, Siitonen J (2002) Tree mortality in a Pinus sylvestris dominated boreal forest landscape in Vienansalo wilderness, eastern Fennoscandia. Silva Fenn 36:127–145

    Google Scholar 

  • Silander J, Järvinen EA (eds) (2004) Vuosien 2002–2003 poikkeuksellisen kuivuuden vaikutukset. Abstract in English: effects of severe drought of 2002/2003. The Finnish Environment 731:1–79

  • Tuomenvirta H (2004) Reliable estimation of climatic variations in Finland: Finnish Meteorological Institute Contributions 43:1–79

    Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweinguber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151

    Article  CAS  Google Scholar 

  • van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112

    Article  Google Scholar 

  • Venäläinen A, Jylhä K, Kilpeläinen T, Saku S, Tuomenvirta H, Vajda A, Ruosteenoja K (2009) Recurrence of heavy precipitation, dry spells and deep snow cover in Finland based on observations. Boreal Environ Res 14:166–172

    Google Scholar 

  • Villalba R, Veblen TT (1998) Influences of large-scale climatic variability on episodic tree mortality in Northern Patagonia. Ecology 79:2624–2640

    Article  Google Scholar 

  • Weber P, Bugmann H, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18:777–792

    Article  Google Scholar 

  • Ympäristöraportoinnin asiantuntijatyöryhmä (2004) Helsingin kaupungin ympäristöraportti 2003. Environment Centre, City of Helsinki, Helsinki

Download references

Acknowledgments

Pines were cored in Villa Anneberg under a license from the City of Helsinki (HKR 2007-814). This study was supported by the Academy of Finland (122033, 217724) and the Niemi Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuli Helama.

Additional information

Communicated by S. Mayr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helama, S., Läänelaid, A., Raisio, J. et al. Mortality of urban pines in Helsinki explored using tree rings and climate records. Trees 26, 353–362 (2012). https://doi.org/10.1007/s00468-011-0597-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0597-z

Keywords

Navigation