Skip to main content
Log in

Semiclassical description of large multipole-deformed metal clusters

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

We use the semiclassical periodic orbit theory to describe large metal clusters with axial quadrupole, octupole, or hexadecapole deformations. The clusters are regarded as cavities with ideally reflecting walls. We start from the case of spherical symmetry and then apply a perturbative approach for calculating the oscillating part of the level density in the deformed case. The advantage of this approach is that one only has to know the periodic orbits of the spherical cavity, which makes the calculation very simple. This perturbative method is a priori restricted to small deformations. However, the results agree quite well with those of quantum-mechanical calculations for deformations that are not too large, such as typically occur for the ground states of metal clusters. We also calculate shell-correction energies. With this, it becomes possible to predict at least qualitatively the deformation energy of metal clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Knight et al.: Phys. Rev. Lett. 52, 2141 (1984)

    Article  ADS  Google Scholar 

  2. W. A. de Heer: Rev. Mod. Phys. 65, 661 (1993)

    Google Scholar 

  3. W. Ekardt: Phys. Rev. B 29, 1558 (1984)

    Article  ADS  Google Scholar 

  4. M. Brack: Rev. Mod. Phys. 65, 677 (1993)

    Article  ADS  Google Scholar 

  5. K. Clemenger: Phys. Rev. B 32, 1359 (1985)

    Article  ADS  Google Scholar 

  6. J. Pedersen et al.: Nature 353, 733 (1991)

    Article  ADS  Google Scholar 

  7. R. Balian, C. Bloch: Ann. Phys. (N.Y.) 69, 76 (1972)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. H. Nishioka, K. Hansen, B. R. Mottelson: Phys. Rev. B 42, 9377 (1990)

    Article  ADS  Google Scholar 

  9. O. Genzken, M. Brack: Phys. Rev. Lett. 67, 3286 (1991); O. Genzken: Mod. Phys. Lett. B 4, 197 (1993)

    Article  ADS  Google Scholar 

  10. J. Lermé et al.: Phys. Rev. B 52, 2868 (1995)

    Article  ADS  Google Scholar 

  11. E. Koch, O. Gunnarsson: Phys. Rev. B 54, 5168 (1996)

    Article  ADS  Google Scholar 

  12. S. G. Nilsson: Mat.-Fys. Medd. Dan. Vidensk. Selsk. 29, 16 (1955)

    Google Scholar 

  13. S. M. Reimann, M. Brack, K. Hansen: Z. Phys. D 28, 235 (1993)

    Article  ADS  Google Scholar 

  14. V. M. Strutinsky: Nucl. Phys. A 122, 1 (1968)

    Article  ADS  Google Scholar 

  15. V. M. Strutinsky: Nukleonika (Poland) 20, 679 (2975) V. M. Strutinsky, A. G. Magner: Sov. J. Part. Nucl. 7, 138 (1976); V. M. Strutinsky, A. G. Magner, S. R. Ofengenden, T. Døssing: Z. Phys. A 283, 269 (1977)

    Google Scholar 

  16. M. Gutzwiller: J. Math. Phys. 12, 343 (1971)

    Article  ADS  Google Scholar 

  17. S. M. Reimann, M. Brack: J. Comp. Math. Sci. 2, 433 (1994)

    Article  Google Scholar 

  18. M. Brack, R. K. Bhaduri: Semiclassical Physics. Reading, Mass.: Addison-Wesley 1997

    Google Scholar 

  19. M. Brack et al.; in: Large Clusters of Atoms and Molecules, p. 1, T. P. Martin (ed.). Dordrecht: Kluwer Academic Publishers 1996

  20. S. C. Creagh, R. G. Littlejohn; Phys. Rev. A 44, 836 (1991); J. Phys. A 25, 1643 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. V. Berry, M. Tabor: Proc. Roy. Soc. Lond. A 349, 101 (1976); ibid. 356, 375 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Einstein: Verh. Dtsch. Phys. Ges. 19, 82 (1917); C. R. Brillouin: Acad. Sci. (Paris) 183, 24 (1926); J. B. Keller: Ann. Phys. (NY) 4, 180 (1958); J. B. Keller, S. I. Rubinow: Ann. Phys. (NY) 9, 24 (1960)

    Google Scholar 

  23. Ozorio de Almeida, in: Quantum Chaos and Statistical Nuclear Physics, T. H. Seligmann, H. Nishioka (eds.) Lecture Notes in Physics, Vol. 263. Berlin, Heidelberg, New York: Springer 1986

  24. S. C. Creagh: Ann. Phys. (N.Y.) 248, 60 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. S. Tomsovic, M. Grinberg, D. Ullmo: Phys. Rev. Lett. 75, 4346 (1995); D. Ullmo, M. Grinberg, S. Tomsovic: Phys. Rev. E 54, 136 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. J. M. Gel’Fand, R. A. Minlos, Z. Ya. Shapiro: Representations of the rotation and Lorentz groups and their applications. Oxford: Oxford University Press 1963

    MATH  Google Scholar 

  27. A. G. Magner et al.: submitted to Ann. Phys. (Leipzig)

  28. S. Frauendorf, V. V. Pashkevich: Ann. Phys. (Leipzig) 5, 34 (1996)

    ADS  Google Scholar 

  29. B. Montag, T. Hirschmann, J. Meyer, M. Brack: Phys. Rev. B 52, 4775 (1995)

    Article  ADS  Google Scholar 

  30. M. Brack: Rev. Mod. Phys. 44, 320 (1972)

    Article  ADS  Google Scholar 

  31. H. A. Bethe: Annu. Rev. Nucl. Sci. 21, 93 (1971)

    Article  ADS  Google Scholar 

  32. M. Brack, P. Quentin: Nucl. Phys. A 361, 35 (1981)

    Article  ADS  Google Scholar 

  33. R. Balian, C. Bloch: Ann. Phys. 60, 401 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, P., Brack, M. & Creagh, S. Semiclassical description of large multipole-deformed metal clusters. Z Phys D - Atoms, Molecules and Clusters 41, 281–290 (1997). https://doi.org/10.1007/s004600050324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004600050324

PACS

Navigation