Skip to main content
Log in

A type III polyketide synthase from Wachendorfia thyrsiflora and its role in diarylheptanoid and phenylphenalenone biosynthesis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Chalcone synthase (CHS) related type III plant polyketide synthases (PKSs) are likely to be involved in the biosynthesis of diarylheptanoids (e.g. curcumin and polycyclic phenylphenalenones), but no such activity has been reported. Root cultures from Wachendorfia thyrsiflora (Haemodoraceae) are a suitable source to search for such enzymes because they synthesize large amounts of phenylphenalenones, but no other products that are known to require CHSs or related enzymes (e.g. flavonoids or stilbenes). A homology-based RT-PCR strategy led to the identification of cDNAs for a type III PKS sharing only approximately 60% identity with typical CHSs. It was named WtPKS1 (W. thyrsiflora polyketide synthase 1). The purified recombinant protein accepted a large variety of aromatic and aliphatic starter CoA esters, including phenylpropionyl- and side-chain unsaturated phenylpropanoid-CoAs. The simplest model for the initial reaction in diarylheptanoid biosynthesis predicts a phenylpropanoid-CoA as starter and a single condensation reaction to a diketide. Benzalacetones, the expected release products, were observed only with unsaturated phenylpropanoid-CoAs, and the best results were obtained with 4-coumaroyl-CoA (80% of the products). With all other substrates, WtPKS1 performed two condensation reactions and released pyrones. We propose that WtPKS1 catalyses the first step in diarylheptanoid biosynthesis and that the observed pyrones are derailment products in the absence of downstream processing proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BAS:

Benzalacetone synthase

CHS:

Chalcone synthase

IPTG:

Isopropyl-β-d-thiogalactopyranoside

NAC:

N-acetylcysteamine

PMSF:

Phenylmethanesulfonyl fluoride

PKS:

Polyketide synthase

2PS:

2-Pyrone synthase

STS:

Stilbene synthase

WtPKS1:

Wachendorfia thyrsiflora polyketide synthase 1

References

  • Abe I, Sano Y, Takahashi Y, Noguchi H (2003) Site-directed mutagenesis of benzalacetone synthase. J Biol Chem 278:25218–25226

    Article  PubMed  CAS  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    Article  PubMed  CAS  Google Scholar 

  • Austin MB, Bowman ME, Ferrer JL, Schröder J, Noel JP (2004a) An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem Biol 11:1179–1194

    Article  CAS  Google Scholar 

  • Austin MB, Izumikawa M, Bowman M, Udwary D, Ferrer J-L, Moore B, Noel J (2004b) Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates. J Biol Chem 279:45162–45174

    Article  CAS  Google Scholar 

  • Baranovsky A, Schmitt B, Fowler DJ, Schneider B (2003) Synthesis of new biosynthetically important diarylheptanoids and their oxa- and fluoro analogues by three different strategies. Synth Commun 33:1019–1045

    Article  CAS  Google Scholar 

  • Bazan AC, Edwards JM, Weiss U (1978) Synthesis of lachnanthocarpone [9-phenyl-2,6-dihydroxyphenalen-1(6)-one] by intramolecular Diels–Alder cyclization of a 1,7-diarylheptanoid orthoquinone; possible biosynthetic significance of Diels–Alder reactions. Tetrahedron 34:3005–3015

    Article  CAS  Google Scholar 

  • Beuerle T, Pichersky E (2002) Enzymatic synthesis and purification of aromatic coenzyme A esters. Arch Biochem Biophys 302:305–312

    CAS  Google Scholar 

  • Bick IRC, Blackman AJ (1973) Haemodorin—a phenalenone pigment from Haemodorum distichophyllum. Aust J Chem 26:1377–1380

    Article  CAS  Google Scholar 

  • Bomati EK, Austin MB, Bowman E, Dixon RA, Noel JP (2005) Structural elucidation of chalcone reductase and implications for deoxychalcone biosynthesis. J Biol Chem 280:30496–30503

    Article  PubMed  CAS  Google Scholar 

  • Borejsza-Wysocki W, Hrazdina G (1994) Biosynthesis of p-hydroxyphenylbutan-2-one in raspberry fruits and tissue cultures. Phytochemistry 35:623–628

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci India 87:44–53

    CAS  Google Scholar 

  • Dora GA (1991) Phytochemical study of some Haemodoraceous plants. PhD thesis, University of Connecticut

  • Eckermann S, Schröder G, Schmidt J, Strack D, Edrada RA, Helariutta Y, Elomaa P, Kotilainen M, Kilpelainen I, Proksch P, Teeri TH, Schröder J (1998) New pathway to polyketides in plants. Nature 396:387–390

    Article  CAS  Google Scholar 

  • Eckermann C, Schröder G, Eckermann S, Strack D, Schmidt J, Schneider B, Schröder J (2003) Stilbenecarboxylate biosynthesis: a new function in the family of chalcone synthase-related proteins. Phytochemistry 62:271–286

    Article  PubMed  CAS  Google Scholar 

  • Edwards JM (1974) Phenylphenalenones from Wachendorfia species. Phytochemistry 13:90–291

    Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784

    Article  PubMed  CAS  Google Scholar 

  • Funa N, Ohnishi Y, Ebizuka Y, Horinouchi S (2002) Properties and substrate specificity of RppA, a chalcone synthase-related polyketide synthase in Streptomyces griseus. J Biol Chem 277:4628–4635

    Article  PubMed  CAS  Google Scholar 

  • Gilbert IH, Ginty M, O’Neill JA, Simpson TJ, Staunton J, Willis CL (1995) Synthesis of β-keto and α,β-unsaturated N-acetylcysteamine thioesters. Bioorg Med Chem Lett 5:1587–1590

    Article  CAS  Google Scholar 

  • Helariutta Y, Elomaa P, Kotilainen M, Griesbach RJ, Schröder J, Teeri TH (1995) Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in Gerbera hybrida (Asteraceae). Plant Mol Biol 28:47–60

    Article  PubMed  CAS  Google Scholar 

  • Hölscher D (1996) Biosynthese und Strukturermittlung von Phenylphenalenonen aus Anigozanthos preissii Endl. PhD thesis, Martin Luther University Halle

  • Hölscher D, Schneider B (1995) A diarylheptanoid intermediate in the biosynthesis of phenylphenalenones in Anigozanthos preissii. J Chem Soc Chem Commun 525–526

  • Hölscher D, Schneider B (1996) A resveratrol dimer from Anigozanthos preissii and Musa Cavendish. Phytochemistry 43:471–473

    Article  Google Scholar 

  • Hölscher D, Schneider B (1997) Phenylphenalenones from root cultures of Anigozanthos preissii. Phytochemistry 45:87–91

    Article  Google Scholar 

  • Jez JM, Austin MB, Ferrer J, Bowman ME, Schröder J, Noel JP (2000a) Structural control of polyketide formation in plant-specific polyketide synthases. Chem Biol 7:919–930

    Article  CAS  Google Scholar 

  • Jez JM, Ferrer J-L, Bowman ME, Dixon RA, Noel JP (2000b) Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39:890–902

    Article  CAS  Google Scholar 

  • Jez JM, Bowman ME, Noel JP (2002) Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proc Natl Acad Sci USA 99:5319–5324

    Article  PubMed  CAS  Google Scholar 

  • Junghans H, Dalkin K, Dixon RA (1993) Stress responses in alfalfa (Medicago sativa L.). 15. Characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Mol Biol 22:239–253

    Article  PubMed  CAS  Google Scholar 

  • Kamo T, Hirai N, Tsuda M, Fujioka D, Ohigashi H (2000) Changes in the content and biosynthesis of phytoalexins in banana fruit. Biosci Biotech Biochem 64:2089–2098

    Article  CAS  Google Scholar 

  • Lanz T, Tropf S, Marner F-J, Schröder J, Schröder G (1991) The role of cysteines in polyketide synthases: site-directed mutagenesis of resveratrol and chalcone synthases, two key enzymes in different plant-specific pathways. J Biol Chem. 266:9971–9976

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Opitz S (2002) Phenylphenalenones and related phenolic pigments of the Haemodoraceae: structure, biosynthesis and accumulation patterns in Xiphidium caeruleum and Wachendorfia thyrsiflora. PhD thesis, Friedrich Schiller University Jena

  • Opitz S, Schneider B (2003) Oxidative biosynthesis of phenylbenzoisochromenones from phenylphenalenones. Phytochemistry 62:307–312

    Article  PubMed  CAS  Google Scholar 

  • Opitz S, Otálvaro F, Echeverri F, Quiñones W, Schneider B (2002) Isomeric oxabenzochrysenones from Musa acuminata and Wachendorfia thyrsiflora. Nat Prod Lett 16:335–338

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schmitt B, Schneider B (1999) Dihydrocinnamic acids are involved in the biosynthesis of phenylphenalenones in Anigozanthos preissii. Phytochemistry 52:45–53

    Article  CAS  Google Scholar 

  • Schröder J (1997) A family of plant-specific polyketide synthases: facts and predictions. Trends Plant Sci 2:373–378

    Article  Google Scholar 

  • Schröder J (2000) The family of chalcone synthase-related proteins: functional diversity and evolution. Recent Adv Phytochem 34:55–89

    Article  Google Scholar 

  • Schröder J, Raiber S, Berger T, Schmidt A, Schmidt J, Soares-Sello AM, Bardshiri E, Strack D, Simpson TJ, Veit M, Schröder G (1998) Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones. Biochemistry 37:8417–8425

    Article  PubMed  Google Scholar 

  • Schüler G, Mithöfer A, Baldwin IT, Berger S, Ebel J, Santos JG, Herrmann G, Hölscher D, Kramell R, Kutchan TM, Maucher H, Schneider B, Stenzel I, Wasternack C, Boland W (2004) Coronalon: a powerful tool in plant stress physiology. FEBS Lett 563:17–22

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Thomas R (2001) A biosynthetic classification of fungal and streptomycete fused-ring aromatic polyketides. ChemBioChem 2:612–627

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Wang CZ, Maier UH, Zenk MH (2000) Synthesis of 3,3′,5-trihydroxybiphenyl-2-carboxylic acid, a component of the bitterest natural product amarogentin and its coenzyme A and N-acetyl cysteamine thiol esters. J Nat Prod 63:371–374

    Article  PubMed  CAS  Google Scholar 

  • Welle R, Schröder G, Schiltz E, Grisebach H, Schröder J (1991) Induced plant responses to pathogen attack: analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. cv. Harosoy 63). Eur J Biochem 196:423–430

    Article  PubMed  CAS  Google Scholar 

  • Zhu JP, Islas-Gonzales G, Bois-Choussy M (2000) Recent progress in isolation, bioactivity evaluation and total synthesis of diarylheptanoids. Org Prep Proced Int 32:505–546

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Gudrun Schröder (Freiburg) for protein expression and practical advice and J.P. Noel (La Jolla) for providing the pHis8 vector. We are grateful to A. Schmidt and M. Reichelt (Jena) for assistance in radio-HPLC analysis and Bettina Raguschke (Jena) for DNA sequencing. This work was financially supported by the Deutsche Forschungsgemeinschaft (Schn 450–4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, S., Hölscher, D., Schierhorn, A. et al. A type III polyketide synthase from Wachendorfia thyrsiflora and its role in diarylheptanoid and phenylphenalenone biosynthesis. Planta 224, 413–428 (2006). https://doi.org/10.1007/s00425-006-0228-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0228-x

Keywords

Navigation