Skip to main content
Log in

The association of coronary flow changes and inflammatory indices to ischaemia–reperfusion microvascular damage and left ventricular remodelling

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to investigate the effect of coronary flow (CF) changes and inflammatory indices on myocardial microcirculation—assessed by myocardial contrast echocardiography (MCE)—and on left ventricular remodelling, in an experimental ischaemia–reperfusion model.

Methods

In 15 pigs, weighing 30 ± 5 kg, ligation of the left anterior descending (LAD) coronary artery was performed, followed by reperfusion for 120 min. Peak, mean, duration and volume of systolic and diastolic components of CF distal to the LAD ligation were measured using a butterfly flowmeter and their ratio was calculated. The following two-dimensional echocardiography indices of LV geometry/function were measured from the apical four-chamber view: LV end-systolic (ESD) and end-diastolic (EDD) dimension long- (Ls, Ld) and short-axis (Ss, Sd) and their ratio (Ld/Sd, Ls/Ss, defined as the sphericity index). Interleukin (IL) 1β, 6, 10 and tumour necrosis factor (TNF) were measured in samples obtained from the LV cavity and coronary sinus. A 0.5 ml/min injection slow bolus over 30 s of SonoVue was made into the left ventricle (LV) in order to assess myocardial perfusion by MCE. Standard apical four-chamber views were digitally acquired and stored for off-line analysis using the Echofit system. The peak intensity (Ac) of the microbubbles at the apex, distally to ligation, was normalised with respect to the peak intensity of the microbubbles in the LV cavity. All parameters were recorded at baseline, immediately after ligation and at 5, 15, 30, 60, 120 min during reperfusion. The percentage changes of CF indices, echocardiographic parameters, interleukins and Ac between baseline and reperfusion were calculated.

Results

Mean systolic CF, systolic volume, peak and mean diastolic flow (MDF) changes and epicardial mean CF, Ld/Sd, Ls/Ss changes and coronary sinus IL-6 (IL-6 cs) were inversely correlated with Ac changes during reperfusion. At 5 and 15 min of reperfusion (hyperaemic phase), the greatest median increase of mean diastolic (172% and 86%), and mean systolic CF (713% and 344%) and the greatest reduction of Ac (−41% at 5 min) compared to baseline (P < 0.05) were observed. The maximum increase of IL-6 cs (40%) was detected at 120 min. ROC analysis showed that of all examined echocardiography indices an increase of mean diastolic CF > 22% was the best predictor of a >25% reduction of Ac with 76% sensitivity and 65% specificity (area 71%, CI 54%–85%, P = 0.02). In addition an >32% increase of IL-6 at 120 min of reperfusion predicted a >25% reduction of Ac with a 76% sensitivity and 65% specificity (area 71% CI 61%–97%, P = 0.01).

Conclusion

Changes of mean diastolic CF and IL-6 cs are associated with alterations in myocardial microvascular integrity after ischaemia–reperfusion and may be used as a predictor of myocardial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bodí V, Sanchis J, Losada A, López-Lereu MP, García D, Pellicer M, Chorro FJ, Llàcer à (2005) Usefulness of quantitative intravenous myocardial contrast echocardiography to analyze microvasculature perfusion in patients with a recent myocardial infarction and an open infarct-related artery: comparison with intracoronary myocardial contrast echocardiography. Eur J Echocardiogr 6:164–174

    Article  PubMed  Google Scholar 

  2. Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, Antoniucci D (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106:2351–2357

    Article  PubMed  Google Scholar 

  3. Cerisano G, Bolognese L, Carrabba N, Buonamici P, Santoro GM, Antoniucci D, Santini A, Moschi G, Fazzini PF (1999) Doppler-derived mitral deceleration time: an early strong predictor of left ventricular remodeling after reperfused anterior acute myocardial infarction. Circulation 99:230–236

    PubMed  CAS  Google Scholar 

  4. Czitrom D, Karila-Cohen D, Brochet E, Juliard JM, Faraggi M, Aumont MC, Assayag P, Steg PG (1999) Acute assessment of microvascular perfusion patterns by myocardial contrast echocardiography during myocardial infarction: relation to timing and extent of functional recovery. Heart 81:12–16

    PubMed  CAS  Google Scholar 

  5. DeBoer LWV, Rude RE, Kloner RA, Ingwall JS, Maroko PR, Davis MA, Braunwald E (1983) A flow- and time-dependent index of ischemic injury after experimental coronary occlusion and reperfusion. Natl Acad Sci (USA) 80:5784–5788

    Article  CAS  Google Scholar 

  6. Eeckhout E, Kern MJ (2001) The coronary no-reflow phenomenon: a review of mechanisms and therapies. Eur Heart J 22:729–739

    Article  PubMed  CAS  Google Scholar 

  7. Garcia SC, Pomblum V, Gams E, Langenbach MR, Schipke JD (2007) Independency of myocardial stunning of endothelial stunning? Basic Res Cardiol 102:359–67

    Article  PubMed  CAS  Google Scholar 

  8. Gaudron P, Eilles C, Kugler I, Ertl G (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction: potential mechanisms and early predictors. Circulation 87:755–763

    PubMed  CAS  Google Scholar 

  9. Giatrakos N, Gao JX, Yang GZ, Nihoyannopoulos P (2003) Feasibility of a new, computer based assessment of myocardial perfusion with contrast echocardiography. Heart 89:37

    Google Scholar 

  10. Grund F, Sommerschild H, Lyberg T, Kirkebøen K, Ilebekk A (1999) Microembolization in pigs: effects on coronary blood flow and myocardial ischemic tolerance. Am J Physiol Heart Circ Physiol 277:533–542

    Google Scholar 

  11. Guillen I, Blanes M, Gomez-Lechon MJ, Castell JV (1995) Cytokine signalling during myocardial infarction: sequential appearance of IL-1 beta and IL-6. Am J Physiol Regul Integr Comp Physiol 269:R229–R235

    CAS  Google Scholar 

  12. Gwechenberger M, Mendoza LH, Youker KA, Frangogiannis NG, Smith CW, Michael LH, Entman ML (1999) Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 99:546–551

    PubMed  CAS  Google Scholar 

  13. Hozumi T, Kanzaki Y, Ueda Y, Yamamuro A, Takagi T, Akasaka T, Homma S, Yoshida K, Yoshikawa J (2003) Coronary flow velocity analysis during short term follow up after coronary reperfusion: use of transthoracic Doppler echocardiography to predict regional wall motion recovery in patients with acute myocardial infarction. Heart 89:1163–1168

    Article  PubMed  CAS  Google Scholar 

  14. Ikonomidis I, Athanassopoulos G, Lekakis J, Venetsanou K, Marinou M, Stamatelopoulos K, Cokkinos DV, Nihoyannopoulos P (2005) Myocardial ischemia induces Interleukin-6 and tissue factor production in patients with coronary artery disease: a Dobutamine stress echocardiography study. Circulation 112:3272–3279

    Article  PubMed  CAS  Google Scholar 

  15. Ito H, Iwakura K, Oh H, Masuyama T, Hori M, Higashino Y, Fujii K, Minamino T (1995) Temporal changes in myocardial perfusion patterns in patients with reperfused anterior wall myocardial infarction. Their relation to myocardial viability. Circulation 91:656–62

    PubMed  CAS  Google Scholar 

  16. Iwakura K, Ito H, Kawano S, Okamura A, Tanaka K, Nishida Y, Maekawa Y, Fujii K (2004) Assessing myocardial perfusion with the transthoracic Doppler technique in patients with reperfused anterior myocardial infarction: comparison with angiographic, enzymatic and electrocardiographic indices. Eur Heart J 25:1480–2

    Article  CAS  Google Scholar 

  17. Iwakura K, Ito H, Nishikawa N, Hiraoka K, Sugimoto K, Higashino Y, Masuyama T, Hori M, Fujii K, Minamino T (1999) Early temporal changes in coronary flow velocity patterns in patients with acute myocardial infarction demonstrating the “no-reflow” phenomenon. Am J Cardiol 84:415–419

    Article  PubMed  CAS  Google Scholar 

  18. Iwakura K, Ito H, Takiuchi S, Taniyama Y, Nakatsuchi Y, Negoro S, Higashino Y, Okamura A, Masuyama T, Hori M, Fujii K, Minamino T (1996) Alternation in the coronary blood flow velocity pattern in patients with no reflow and reperfused acute myocardial infarction. Circulation 94:1269–1275

    PubMed  CAS  Google Scholar 

  19. Kaul S (2006) Evaluating the ‘no reflow’ phenomenon with myocardial contrast echocardiography. Basic Res Cardiol 101: 391–9

    Article  PubMed  Google Scholar 

  20. Kaul S, Ito H (2004) Microvasculature in acute myocardial ischemia: Part II. Circulation 109:310–315

    Article  PubMed  Google Scholar 

  21. Kleber FX, Nussberger J, Niemöller L, Doering W (1992) Mechanisms involved in cardiac enlargement and congestive heart failure development after acute myocardial infarction. Cardiology 81:213–220

    Article  PubMed  CAS  Google Scholar 

  22. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    Article  PubMed  CAS  Google Scholar 

  23. Kloner RA, Rude RE, Carlson N, Maroko PR, DeBoer LW, Braunwald E (1980) Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation 62:945–952

    PubMed  CAS  Google Scholar 

  24. Kukielka GL, Smith CW, Manning AM, Youker K, Michael LH, Entman ML (1995) Induction of interleukin-6 synthesis in the myocardium: potential role in postreperfusion inflammatory injury. Circulation 92:1866–1875

    PubMed  CAS  Google Scholar 

  25. Lepper W, Sieswerda GT, Franke A, Heussen N, Kamp O, de Cock CC, Schwarz ER, Voci P, Visser CA, Hanrath P, Hoffmann R (2002) Repeated assessment of coronary flow velocity pattern in patients with first acute myocardial infarction. J Am Coll Cardiol 39:1283–9

    Article  PubMed  Google Scholar 

  26. Mannaerts HFJ, van der Heide JA, Kamp O, Stoel MG, Twisk J, Visser CA (2004) Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Heart 25:680–687

    Article  Google Scholar 

  27. Miyao Y, Yasue H, Ogawa H, Misumi I, Masuda T, Sakamoto T, Morita E (1993) Elevated plasma interleukin-6 levels in patients with acute myocardial infarction. Am Heart J 126:1299–304

    Article  PubMed  CAS  Google Scholar 

  28. Moir S, Haluska B, Leung D, Lim R, Garrahy P, Marwick TH (2004) Quantitative myocardial contrast echocardiography for prediction of thrombolysis in myocardial infarction flow in acute myocardial infarction. Am J Cardiol 93:1212–7

    Article  PubMed  Google Scholar 

  29. Nakamura K, Al-Ruzzeh S, Gray C, Yacoub M, Amrani M (2006) Effect of myocardial reperfusion on the release of nitric oxide after regional ischemia. Tex Heart Inst J 33:35–39

    PubMed  Google Scholar 

  30. Okamura A, Ito H, Iwakura K, Kawano S, Kurotobi T, Date M, Inoue K, Ogihara T, Fujii K (2006) Effect of reactive hyperemia after coronary recanalization on myocardial tissue reperfusion by thrombolysis in myocardial infarction flow grade in acute myocardial infarction. Am J Cardiol 97:617–623

    Article  PubMed  Google Scholar 

  31. Patterson RE, Kirk ES (1983) Analysis of coronary collateral structure, function, and ischemic border zones in pigs. Am J Physiol Heart Circ Physiol 244:23–31

    Google Scholar 

  32. Patterson E, Burow RD, Hung CY, Scherlag BJ (1993) Coronary vascular injury after transient coronary artery occlusion. Lab Invest 69:471–482

    PubMed  CAS  Google Scholar 

  33. Reffelmann T, Kloner RA (2006) The no-reflow phenomenon: a basic mechanism of myocardial ischemia andreperfusion. Basic Res Cardiol 101:359–372

    Article  PubMed  Google Scholar 

  34. Reffelmann T, Kloner RA (2002) The “no-reflow” phenomenon: basic science and clinical correlates. Heart 87:162–168

    Article  PubMed  Google Scholar 

  35. Reffelmann T, Hale SL, Li G, Kloner RA (2002) Relationship between no reflow and infarct size as influenced by the duration of ischemia and reperfusion. Am J Physiol Heart Circ Physiol 282:H766–H772

    PubMed  CAS  Google Scholar 

  36. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101:1767–1772

    PubMed  CAS  Google Scholar 

  37. Rigo F, Varga Z, Di Pede F, Grassi G, Turiano G, Zuin G, Coli U, Raviele A, Picano E (2004) Early assessment of coronary flow reserve by transthoracic Doppler echocardiography predicts late remodeling in reperfused anterior myocardial infarction. J Am Soc Echocardiogr 17:750–755

    Article  PubMed  Google Scholar 

  38. Sakabe K, Wakatsuki T, Shinohara H, Ikata J, Fujinaga H, Oishi Y, Toyoshima T, Nishikado A, Oki T, Ito S (1998) Coronary flow velocity patterns immediately after reperfusion reflect the pathologic characteristics of reperfused myocardium in canine models of acute myocardial infarction. Coron Artery Dis 9:21–27

    Article  PubMed  CAS  Google Scholar 

  39. Shimoni S, Frangogiannis NG, Aggeli CJ (2002) Microvascular structural correlates of myocardial contrast echocardiography in patients with coronary artery disease and left ventricular dysfunction. Circulation 106:950–956

    Article  PubMed  Google Scholar 

  40. Skyschally A, Leineweber K, Gres P, Haude M, Erbel R, Heusch G (2006) Coronary microembolization. Basic Res Cardiol 101:373–382

    Article  PubMed  Google Scholar 

  41. Stevens RM, Jahania MS, Stivers JE, Mentzer RM, Lasley RD (2002) Effects of in vivo myocardial ischemia and reperfusion on interstitial nitric oxide metabolites. Ann Thorac Surg 73:1261–1266

    Article  PubMed  Google Scholar 

  42. Toledo E, Jacobs LD, Lodato JA, DeCara JM, Coon P, Mor-Avi V, Lang RM (2006) Quantitative diagnosis of stress-induced myocardial ischemia using analysis of contrast echocardiographic parametric perfusion images. Eur J Echocardiogr 6:217–225

    Article  Google Scholar 

  43. Tsunoda T, Nakamura M, Wakatsuki T, Nishida T, Asahara T, Anzai H, Touma H, Mitsuo K, Soumitsu Y, Sakatani H, Nakamura S, Degawa T, Yamaguchi T (1998) The pattern of alteration in flow velocity in the recanalized artery is related to left ventricular recovery in patients with acute infarction and successful direct balloon angioplasty. J Am Coll Cardiol 32:338–344

    Article  PubMed  CAS  Google Scholar 

  44. Vetterlein F, Schrader C, Volkmann R, Neckel M, Ochs M, Schmidt G, Hellige G (2003) Extent of damage in ischemic, nonreperfused, and reperfused myocardium of anesthetized rats. Am J Physiol Heart Circ Physiol 285:H755–H765

    PubMed  CAS  Google Scholar 

  45. Visser AC (2003) Left ventricular remodelling after myocardial infarction: importance of residual myocardial viability and ischaemia. Heart 89:1121–1122

    Article  PubMed  CAS  Google Scholar 

  46. Voci P, Pizzuto F, Romeo F (2004) The slippery slope. Eur Heart J 25:1480–1482

    Article  PubMed  Google Scholar 

  47. Wakatsuki T, Oki T, Sakabe K, Shinohara H, Ikata J, Tabata T, Nishikado A, Ito S, Yamaguchi T (1999) Coronary flow velocity immediately after reperfusion reflects myocardial microcirculation in canine models of acute myocardial infarction. Angiology 50:919–928

    PubMed  CAS  Google Scholar 

  48. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba D, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97: 473–483

    PubMed  CAS  Google Scholar 

  49. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51

    PubMed  CAS  Google Scholar 

  50. Yamauchi-Takihara K, Ihara Y, Ogata A, Yoshizaki K, Azuma J, Kishimoto T (1995) Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 91:1520–1524

    PubMed  CAS  Google Scholar 

  51. Yang Z, Zingarelli B, Szabo C (2000) Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation 101: 1019–1026

    PubMed  CAS  Google Scholar 

  52. Zahger D, Yano J, Chaux A, Fishbein MC, Ganz W (1995) Absence of lethal reperfusion injury after 3 hours of reperfusion. A study in a single-canine-heart model of ischemia–reperfusion. Circulation 91:89–94

    Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. S. D. Moulopoulos for his valuable advice providing us useful remarks about the study. We also gratefully acknowledge the technical assistance of Mr. G. Saatsakis.

Conflict of interest statement

None of the authors have any conflicts of interest in connection with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Bramos MD.

Additional information

The work was performed in the experimental laboratory of “Alexandra” Hospital (Athens, Greece).

Returned for 1. Revision: 19 December 2007 1. Revision received: 30 January 2008

Returned for 2. Revision: 25 Feburary 2008 2. Revision received: 26 February 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bramos, D., Ikonomidis, I., Tsirikos, N. et al. The association of coronary flow changes and inflammatory indices to ischaemia–reperfusion microvascular damage and left ventricular remodelling. Basic Res Cardiol 103, 345–355 (2008). https://doi.org/10.1007/s00395-008-0720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0720-5

Key words

Navigation