Skip to main content

Advertisement

Log in

Extracellular volume fraction in coronary chronic total occlusion patients

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

(1) To assess extracellular volume fraction (ECV) and regional systolic function in patients presenting with coronary chronic total occlusion (CTO) in areas without significant late gadolinium enhancement (LGE), and (2) to investigate the correlation between angiography collateral flow and ECV in territories supplied by CTO vessels. A total of 50 angiographically documented CTO patients and 15 age- and sex-matched normal controls were recruited to the study. Myocardial ECV, was calculated in infarcted, global non-infarcted and the entire myocardium respectively. Segmental ECV was calculated from myocardial segments within the perfusion territory of a CTO vessel. The global and regional systolic function was evaluated using ejection fraction and percent systolic thickening. ECVs in global myocardium and global non-infarcted myocardium were significantly elevated in comparison with that in controls (29.1 ± 4.2 % and 26.6 ± 2.6 % vs. 23.3 ± 2.0 %, all P < 0.005). Global ECV significantly correlated with LV ejection fraction (r = −0.56, P < 0.001) and ECV inversely correlated with systolic thickening in global non-infarcted myocardium (r = −0.31, P < 0.05). The lower segmental ECV was associated with the presence of well-developed collaterals (P = 0.004), and multivariate binary logistic analysis demonstrated that mean segmental ECV and course of disease were the independent discriminator of collateral flow with overall diagnostic accuracy of 74.4 %. In patients with CTO, ECV is found to be increased beyond that observed with LGE, and correlates with LV regional wall motion abnormality, which appears to reflect diffuse myocardial fibrosis. Mean segmental ECV value, combined with course of disease, may serve as good predictors of collateral flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ECV:

Extracellular volume fraction

CTO:

Chronic total occlusion

LGE:

Late gadolinium enhancement

DMF:

Diffuse myocardial fibrosis

CMR:

Cardiovascular magnetic resonance

MI:

Myocardial infarction

MYO:

Myocardium

EF:

Ejection fraction

MOLLI:

Modified Look-Locker Inversion Recovery

TIMI:

Thrombolysis in myocardial infarction grade

References

  1. Brilakis ES, Karmpaliotis D, Vo MN, Garcia S, Michalis L, Alaswad K, Doshi P, Lombardi WL, Banerjee S (2014) Advances in the management of coronary chronic total occlusions. J Cardiovasc Transl Res 7:426–436

    Article  PubMed  Google Scholar 

  2. Galla JM, Whitlow PL (2010) Coronary chronic total occlusion. Cardiol Clin 28:71–79

    Article  PubMed  Google Scholar 

  3. White SK, Sado DM, Flett AS, Moon JC (2012) Characterising the myocardial interstitial space: the clinical relevance of non-invasive imaging. Heart 98:773–779

    Article  PubMed  Google Scholar 

  4. Chan W, Duffy SJ, White DA, Gao X, Du X, Ellims AH, Dart AM, Taylor AJ (2012) Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with reomote extracellular matrix expansion. JACC Cardiovasc Imaging 5:884–893

    Article  PubMed  Google Scholar 

  5. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JAC (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57:891–903

    Article  PubMed  Google Scholar 

  6. Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33:1268–1278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, Mulukutla SR, Simon MA, Shroff SG, Kuller LH, Schelbert EB (2014) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 35:657–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hong YJ, Park CH, Kim YJ, Hur J, Lee HJ, Hong SR, Suh YJ, Greiser A, Paek MY, Choi BW, Kim TH (2015) Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects. Int J Cardiovasc Imaging. doi:10.1007/s10554-015-0595-0

    Google Scholar 

  9. Dusenbery SM, Jerosch-Herold M, Rickers C, Colan SD, Geva T, Newburger JW, Powell AJ (2014) Myocardial extracellular remodeling is associated with ventricular diastolic dysfunction in children and young adults with congenital aortic stenosis. J Am Coll Cardiol 63:1778–1785

    Article  PubMed  Google Scholar 

  10. Thuny F, Lovric D, Schnell F, Bergerot C, Ernande L, Cottin V, Derumeaux G, Croisille P (2014) Quantification of myocardial extracellular volume fraction with cardiac MR imaging for early detection of left ventricle involvement in systemic sclerosis. Radiology 271:373–380

    Article  PubMed  Google Scholar 

  11. Ntusi NA, Piechnik SK, Francis JM, Ferreira VM, Matthews PM, Robson MD, Wordsworth PB, Neubauer S, Karamitsos TD (2015) Diffuse myocardial fibrosis and inflammation in rheumatoid arthritis: insights from CMR T1 mapping. JACC Cardiovasc Imaging. doi:10.1016/j.jcmg.2014.12.025

    PubMed  Google Scholar 

  12. Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C, Moon JC (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122:138–144

    Article  PubMed  Google Scholar 

  13. Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S, Ray SG, Yonan N, Williams SG, Flett AS, Moon JC, Greiser A, Parker GJ, Schmitt M (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6:373–383

    Article  PubMed  Google Scholar 

  14. Pohl T, Seiler C, Billinger M, Herren E, Wustmann K, Mehta H, Windecker S, Eberli FR, Meier B (2001) Frequency distribution of collateral flow and factors influencing collateral channel development. Functional collateral channel measurement in 450 patients with coronary artery disease. J Am Coll Cardiol 38:1872–1878

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Li Y, Li M, Pan J, Lu Z (2014) Collateral vessel opacification with CT in patients with coronary total occlusion and its relationship with downstream myocardial infarction. Radiology 271:703–710

    Article  PubMed  Google Scholar 

  16. Choi JH, Chang SA, Choi JO, Song YB, Hahn JY, Choi SH, Lee SC, Lee SH, Oh JK, Choe Y, Gwon HC (2013) Frequency of myocardial infarction and its relationship to angiographic collateral flow in territories supplied by chronically occluded coronary arteries. Circulation 127:703–709

    Article  PubMed  Google Scholar 

  17. Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  19. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  20. Dall’Armellina E, Piechnik SK, Ferreira VM, Si QL, Robson MD, Francis JM, Cuculi F, Kharbanda RK, Banning AP, Choudhury RP, Karamitsos TD, Neubauer S (2012) Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson 14:15

    Article  PubMed Central  PubMed  Google Scholar 

  21. Stone GW, Kandzari DE, Mehran R, Colombo A, Schwartz RS, Bailey S, Moussa I, Teirstein PS, Dangas G, Baim DS, Selmon M, Strauss BH, Tamai H, Suzuki T, Mitsudo K, Katoh O, Cox DA, Hoye A, Mintz GS, Grube E, Cannon LA, Reifart NJ, Reisman M, Abizaid A, Moses JW, Leon MB, Serruys PW (2005) Percutaneous recanalization of chronically occluded coronary arteries: a consensus document: Part I. Circulation 112:2364–2372

    Article  PubMed  Google Scholar 

  22. Jellis C, Wright J, Kennedy D, Sacre J, Jenkins C, Haluska B, Martin J, Fenwick J, Marwick TH (2011) Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy. Circ Cardiovasc Imaging 4:693–702

    Article  PubMed  Google Scholar 

  23. Messroghli DR, Nordmeyer S, Dietrich T, Dirsch O, Kaschina E, Savvatis K, Klein C, Berger F, Kuehne T (2011) Assessment of diffuse myocardial fibrosis in rats using small-animal Look-Locker inversion recovery T1 mapping. Circ Cardiovasc Imaging 4:636–640

    Article  PubMed  Google Scholar 

  24. Stuckey DJ, McSweeney SJ, Thin MZ, Habib J, Price AN, Fiedler LR, Gsell W, Prasad SK, Schneider MD (2014) T1 mapping detects pharmacological retardation of diffuse cardiac fibrosis in mouse pressure-overload hypertrophy. Circ Cardiovasc Imaging 7:240–249

    Article  PubMed  Google Scholar 

  25. Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52:1574–1580

    Article  PubMed  Google Scholar 

  26. Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, Francis JM, Karamitsos TD, Prendergast BD, Robson MD, Neubauer S, Moon JC, Myerson SG (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932–937

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ellims AH, Shaw JA, Stub D, Iles LM, Hare JL, Slavin GS, Kaye DM, Taylor AJ (2014) Diffuse myocardial fibrosis evaluated by post-contrast T1 mapping correlates with left ventricular stiffness. J Am Coll Cardiol 63:1112–1118

    Article  PubMed  Google Scholar 

  28. Ellims AH, Iles LM, Ling LH, Hare JL, Kaye DM, Taylor AJ (2012) Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance, and is associated with left ventricular diastolic dysfunction. J Cardiovasc Magn Reson 14:76

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kellman P, Hansen MS (2014) T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 16:2

    Article  PubMed Central  PubMed  Google Scholar 

  30. Brilla CG, Funck RC, Rupp H (2000) Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102:1388–1393

    Article  CAS  PubMed  Google Scholar 

  31. Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, Shakesprere J, Kellman P, Shroff SG, Schwartzman DS, Mulukutla SR, Simon MA, Schelbert EB (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126:1206–1216

    Article  PubMed Central  PubMed  Google Scholar 

  32. Billinger M, Kloos P, Eberli FR, Windecker S, Meier B, Seiler C (2002) Physiologically assessed coronary collateral flow and adverse cardiac ischemic events: a follow-up study in 403 patients with coronary artery disease. J Am Coll Cardiol 40:1545–1550

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Number 81201070) and Fudan University Foundation for young teachers to improve scientific research ability (Grant Number 20520133486).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Su Zeng, Hang Jin or Liang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.Y., Zhang, W.G., Yang, S. et al. Extracellular volume fraction in coronary chronic total occlusion patients. Int J Cardiovasc Imaging 31, 1211–1221 (2015). https://doi.org/10.1007/s10554-015-0680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0680-4

Keywords

Navigation