Skip to main content
Log in

ENU mutagenesis in mice identifies candidate genes for hypogonadism

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low-density genome-wide SNP arrays. Ten of the 15 lines were pursued further using higher-resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism, candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acevedo-Arozena A et al (2008) ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 9:49–69

    Article  PubMed  CAS  Google Scholar 

  • Bannister LA et al (2007) A dominant, recombination-defective allele of Dmc1 causing male-specific sterility. PLoS Biol 5:e105

    Article  PubMed  Google Scholar 

  • Baudat F et al (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–840

    Article  PubMed  CAS  Google Scholar 

  • Boles MK et al (2009) Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin. PLoS Genet 5:e1000759

    Article  PubMed  Google Scholar 

  • Brugh VM III, Lipschultz LI (2004) Male factor infertility: evaluation and management. Med Clin North Am 88:367–385

    Article  PubMed  Google Scholar 

  • Ching YH et al (2010a) High resolution mapping and positional cloning of ENU-induced mutations in the Rw region of mouse chromosome 5. BMC Genet 11:106

    Article  PubMed  CAS  Google Scholar 

  • Ching YH et al (2010b) An allele separating skeletal patterning and spermatogonial renewal functions of PLZF. BMC Dev Biol 10:33

    Article  PubMed  Google Scholar 

  • Church DM et al (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7:e1000112

    Article  PubMed  Google Scholar 

  • Clark AT et al (2004) Implementing large-scale ENU mutagenesis screens in North America. Genetica 122:51–64

    Article  PubMed  CAS  Google Scholar 

  • Debruyne JP et al (2006) A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50:465–477

    Article  PubMed  CAS  Google Scholar 

  • Durbin RM et al (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  CAS  Google Scholar 

  • Fautsch MP et al (1992) Conservation of coding and transcriptional control sequences within the snRNP E protein gene. Genomics 14:883–890

    Article  PubMed  CAS  Google Scholar 

  • Ferlin A et al (2003) The INSL3-LGR8/GREAT ligand-receptor pair in human cryptorchidism. J Clin Endocrinol Metab 88:4273–4279

    Article  PubMed  CAS  Google Scholar 

  • Foresta C et al (2002) Guidelines for the appropriate use of genetic tests in infertile couples. Eur J Hum Genet 10:303–312

    Article  PubMed  Google Scholar 

  • Furnes B, Schimenti J (2007) Fast forward to new genes in mammalian reproduction. J Physiol 578:25–32

    Article  PubMed  CAS  Google Scholar 

  • Guenet JL (2004) Chemical mutagenesis of the mouse genome: an overview. Genetica 122:9–24

    Article  PubMed  CAS  Google Scholar 

  • Handel MA et al (2006) Mutagenesis as an unbiased approach to identify novel contraceptive targets. Mol Cell Endocrinol 250:201–205

    Article  PubMed  CAS  Google Scholar 

  • Harris T et al (2007) Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases. Biol Reprod 77:376–382

    Article  PubMed  CAS  Google Scholar 

  • Harris RM et al (2010) A missense mutation in LRR8 of RXFP2 is associated with cryptorchidism. Mamm Genome 21:442–449

    Article  PubMed  CAS  Google Scholar 

  • Harris RM et al (2011) Male hypogonadism and germ cell loss caused by a mutation in Polo-like kinase 4. Endocrinology 152:3975–3985

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K et al (2005) A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438:374–378

    Article  PubMed  CAS  Google Scholar 

  • Irvine DS (1998) Epidemiology and aetiology of male infertility. Hum Reprod 13(Suppl 1):33–44

    Article  PubMed  Google Scholar 

  • Jongeneel CV et al (2005) An atlas of human gene expression from massively parallel signature sequencing (MPSS). Genome Res 15:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Justice MJ et al (1999) Mouse ENU mutagenesis. Hum Mol Genet 8:1955–1963

    Article  PubMed  CAS  Google Scholar 

  • Kennedy CL, O’Bryan MK (2006) N-ethyl-N-nitrosourea (ENU) mutagenesis and male fertility research. Hum Reprod Update 12:293–301

    Article  PubMed  CAS  Google Scholar 

  • Kuroda-Kawaguchi T et al (2001) The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 29:279–286

    Article  PubMed  CAS  Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Matzuk MM et al (2008) The biology of infertility: research advances and clinical challenges. Nat Med 14:1197–1213

    Article  PubMed  CAS  Google Scholar 

  • Mihola O et al (2009) A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323:373–375

    Article  PubMed  CAS  Google Scholar 

  • Moldin SO et al (2001) Trans-NIH neuroscience initiatives on mouse phenotyping and mutagenesis. Mamm Genome 12:575–581

    Article  PubMed  CAS  Google Scholar 

  • Moran JL et al (2006) Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. Genome Res 16:436–440

    Article  PubMed  CAS  Google Scholar 

  • O’Bryan MK, de Kretser D (2006) Mouse models for genes involved in impaired spermatogenesis. Int J Androl 29:76–89 discussion 105–108

    Article  PubMed  Google Scholar 

  • O’Flynn O’Brien KL et al (2010) The genetic causes of male factor infertility: a review. Fertil Steril 93:1–12

    Article  PubMed  Google Scholar 

  • Parvanov ED et al (2010) Prdm9 controls activation of mammalian recombination hotspots. Science 327:835

    Article  PubMed  CAS  Google Scholar 

  • Philipps DL et al (2008) The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition. Dev Biol 317:72–82

    Article  PubMed  CAS  Google Scholar 

  • Raverot G et al (2005) Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol 283:215–225

    Article  PubMed  CAS  Google Scholar 

  • Stanford DR et al (1988) The complete primary structure of the human snRNP E protein. Nucleic Acids Res 16:10593–10605

    Article  PubMed  CAS  Google Scholar 

  • Tyler-Smith C et al (2009) The will-o’-the-wisp of genetics–hunting for the azoospermia factor gene. N Engl J Med 360:925–927

    Article  PubMed  CAS  Google Scholar 

  • Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Vitaterna MH et al (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    Article  PubMed  CAS  Google Scholar 

  • Vitaterna MH et al (2006) Large-scale mutagenesis and phenotypic screens for the nervous system and behavior in mice. Trends Neurosci 29:233–240

    Article  PubMed  CAS  Google Scholar 

  • Ward JO et al (2007) Mutation in mouse hei10, an e3 ubiquitin ligase, disrupts meiotic crossing over. PLoS Genet 3:e139

    Article  PubMed  Google Scholar 

  • Waterston RH et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants U01 HD043425 (JLJ) and U01 HD43430 (DRB); by the Northwestern University Genomics Core, which is supported by a Cancer Center Support Grant (NCI CA060553); and by the Northwestern University Biostatistics Collaboration Center, which is supported by a grant from the National Center for Research Resources (UL1 RR025741). The authors thank Timothy Barrett and Donna Emge for exceptional technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, J., Hurley, L.A., Harris, R.M. et al. ENU mutagenesis in mice identifies candidate genes for hypogonadism. Mamm Genome 23, 346–355 (2012). https://doi.org/10.1007/s00335-011-9388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9388-5

Keywords

Navigation