Skip to main content
Log in

Chemical mutagenesis of the mouse genome: an overview

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The careful comparison of the phenotypic variations generated by different alleles at a given locus, including of course, those alleles with a deleterious effect, is often an important source of information for the understanding of gene functions. In fact, every time it is possible to match a specific alteration observed at the genomic level with a particular pathology, it is possible to establish a relationship between a gene and its function. When considered from this point of view, the production of new mutations by experimental mutagenesis appears as an alternative to the strategy of in vitro gene invalidation by homologous recombination in embryonic stem (ES) cells, with the advantage that experimental mutagenesis does not require any previous knowledge of the gene structure at the molecular level. Homologous recombination in ES cells is a ‘gene driven’ approach, in which mutant alleles are produced for those genes that we already know. Experimental mutagenesis, on the contrary, is a ‘phenotype driven’ approach, in which unknown genes are identified based on phenotypic changes. Also, while homologous recombination in ES cells requires a rather sophisticated technology, mutagenesis is simple to achieve but relies greatly on the efficiency of the mutagenic treatment as well as on the use of an accurate protocol for phenotyping. In this review, we will address a few comments about the different techniques that can be used for the induction of point mutations in the mouse germ line with special emphasis on chemical mutagenesis. We will also discuss the limitations of experimental mutagenesis and the necessity to look for alternative ways for the discovery of new genes and gene functions in the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashby, J., N. J. Gorelick & M. D. Shelby, 1997. Mutation assays in male germ cells from transgenic mice: overview of study and conclusions. Mutat. Res. 388: 111–122.

    PubMed  Google Scholar 

  • Bishop, C. E., P. Boursot, B. Baron, F. Bonhomme & D. Hatat, 1985. Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromo-some. Nature 315: 70–72.

    PubMed  Google Scholar 

  • Bode, V. C., 1984. Ethylnitrosourea mutagenesis and the isolation of mutant alleles for specific genes located in the T region of mouse chromosome 17. Genetics 108: 457–470.

    PubMed  Google Scholar 

  • Bode, V. C., J. D. McDonald, J.-L. Guenet & D. Simon, 1988. hph-1: a mouse mutant with hereditary hyperphenylalani-nemia induced by ethylnitrosourea mutagenesis. Genetics 118: 299–305.

    PubMed  Google Scholar 

  • Brown, S. D. M. & J. Peters, 1996. Combining mutagenesis and genomics in the mouse-closing the phenotype gap. Trends Genet. 12: 433–435.

    PubMed  Google Scholar 

  • Bulfield, G., W. G. Siller, P. A. Wight & K. J. Moore, 1984. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc. Nat. Acad. Sci. USA 81: 1189–1192.

    PubMed  Google Scholar 

  • Cattanach, B. M., 1971.Speciffic locus mutation in mice, pp 535–539 in Chemical Mutagens: Principles and Methods for their Detection, Vol. 2, edited by A. Hollaender,Plenum Press, New York, London.

    Google Scholar 

  • Chapman, V. M., D. R. Miller, D. Armstrong & T. C. Caskey, 1989.Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc. Nat. Acad. Sci. USA86:1292–1296.

    Google Scholar 

  • Charles, D. J. & W. Pretsch, 1987. Linear dose-response relationship of erythrocyte enzyme-activity mutations in offspring of ethylnitrosourea-treated mice. Mutat. Res. 176:81–91.

    PubMed  Google Scholar 

  • Cox, R. D., A. Hugill, A. Shedlovsky, J. K. Noveroske, S. Best, M. J. Justice, H. Lehrach & W. F. Dove, 1999. Contrasting e. ects of ENU induced embryonic lethal mutations of the quaking gene. Genomics 57: 333–341.

    PubMed  Google Scholar 

  • Davis, A. P., R. P. Woychik & M. J. Justice, 1999. E. ective chemical mutagenesis in FVB/N mice requires low doses of ethylnitrosourea. Mammal. Genome 10: 308–310.

    Google Scholar 

  • Dycaico, M. J., G. S. Provost, P. L. Kretz, S. L. Ransom, J. C. Moores & J. M. Short, 1994. The use of shuttle vectors for mutation analysis in transgenic mice and rats. Mutat. Res. 307: 461–478.

    PubMed  Google Scholar 

  • Ehling, U. H., 1970. The multiple loci method, pp. 156–161 in Chemical Mutagenesis in Mammals and Man, edited by F. Vogel & G. Röhrborn,Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Ewing, B. & P. Green, 2000. Analysis of expressed sequence tags indicates 35, 000 human genes. Nature Genet. 25: 232–234.

    PubMed  Google Scholar 

  • Favor, J., 1986. A comparison of the mutation rates to dominant and recessive alleles in germ cells of the mouse. Prog. in Clin. Biol. Res. 209: 519–526.

    Google Scholar 

  • Favor, J., 1994. Spontaneous mutations in germ cells of the mouse: estimates of mutation frequencies and a molecular characterization of mutagenic events. Mutat Res 304: 107–118.

    PubMed  Google Scholar 

  • Favor, J., 1998. The mutagenic activity of the ethylnitrosourea at low doses in spermatogonia of the mouse as assessed by the speciffic locus test. Mutat. Res. 405: 221–226.

    PubMed  Google Scholar 

  • Favor, J., 1999. Mechanisms of mutation induction in germ cells of the mouse as assessed by the speciffic locus test.Mutat. Res. 428: 227–236.

    PubMed  Google Scholar 

  • Favor, J., M. Sund, U. H. Neuha üser-Klaus & A. Ehling, 1990. A dose response analysis of ethylnitrosourea-induced recessive Speciffic-locus mutations in treated spermatogonia of the mouse. Mutat. Res. 231: 47–54.

    PubMed  Google Scholar 

  • Ferris, S. D., R. D. Sage & A. C. Wilson, 1982. Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295: 163–165.

    PubMed  Google Scholar 

  • Gossen, J. A., W. J. F. de Leeuw, C. H. T. Tan, E. C. Zwarthof, F. Berends, P. H. M. Lohman, D. L. Knook & J. Vijg, 1989. Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo. Proc. Nat. Acad. Sci. USA 86: 7971–7975.

    PubMed  Google Scholar 

  • Green, M. C., 1966. Mutant genes and linkage, pp. 87–150 in Biology of the Laboratory Mouse, edited by E. L. Green, Dover Publications, New York.

    Google Scholar 

  • Green, M. C., 1981. Genetic Variants and Strains of the Laboratory Mouse. Gustav Fischer Verlag, Stuttgart and New York.

    Google Scholar 

  • Harbach, P. R., A. L. Filipunas, Y. Wang & C. S. Aaron, 1992. DNA sequence analysis of spontaneous and N-ethyl-N-nitrosourea-induced hprt mutations arising in vivo in cynomolgus monkey T-lymphocytes. Environ. Mol. Muta-gen. 20: 96–105.

    Google Scholar 

  • Hitotsumachi, S.,D. A. Carpenter & W. Russell, 1985. Dose-repetition increases the mutagenic e. ectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc. Nat. Acad.Sci. USA 82: 6619–6621.

    PubMed  Google Scholar 

  • Hollaender, A., 1971. Chemical Mutagens: Principles and Methods for their Detection, Vol. 1 and 2, Plenum Press, New York, London.

    Google Scholar 

  • Hong, H. K., J. K. Noveroske, D. J. Headon, T. Liu, M. S. Sy, M. J. Justice & A. Chakravarti, 2001. The winged helix/ forkhead transcription factor Foxq1 regulates differentia-tion of hair in satin mice. Genesis 29: 163–171.

    PubMed  Google Scholar 

  • Hrabe de Angelis, M. H., H. Flaswinkel, H. Fuchs, B. Rathkolb, D. Soewarto, S. Marschall, S. Heffner, W. Pargent, K. Wuensch, M. Jung, A. Reis, T. Richter, F. Alessandrini, T. Jakob, E. Fuchs, H. Kolb, E. Kremmer, K. Schaeble, B. Rollinski, A. Roscher, C. Peters, T. Meitinger, T. Strom, T. Steckler, F. Holsboer, T. Klopstock, F. Gekeler, C. Schindewolf, T. Jung, K. Avraham, H. Behrendt, J. Ring, A. Zimmer, K. Schughart, K. Pfeffer, E. Wolf & R. Balling, 2000. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25: 444–447.

    PubMed  Google Scholar 

  • Jaubert, J., F. Jaubert, N. Martin, L. L. Washburn, B. K. Lee, E. M. Eicher & J.-L. Guenet, 1999. Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr 3). Proc. Nat. Acad. Sci. USA 96: 10278–10283.

    PubMed  Google Scholar 

  • Jin, H. K., T. Yamashita, K. Ochiai, O. Haller & T. Watanabe, 1998. Characterization and expression of the Mx1 gene in wild mouse species. Biochem. Genet. 36: 311–322.

    Google Scholar 

  • Johnson, F. M. & S. E. Lewis, 1981. Electrophoretically detected germinal mutations induced in the mouse by ethylnitrosourea. Proc. Nat. Acad. Sci. USA. 78: 3138–3141.

    PubMed  Google Scholar 

  • Justice, M. J. & V. C. Bode, 1986. Induction of new mutations in a mouse t-haplotype using ethylnitrosourea mutagenesis. Genet. Res. 47: 187–192.

    PubMed  Google Scholar 

  • Justice, M. J. & V. C. Bode, 1988. Three ENU-induced alleles of the murine quaking locus are recessive embryonic lethal mutations. Genet. Res. 51: 95–102.

    PubMed  Google Scholar 

  • Justice, M. J. & V. C. Bode, 1990. ENU-induced allele of brachyury (Tkt1) exhibits a developmental lethal phenotype similar to the original brachyury (T) mutation. J. Exp. Zool. 254: 286–295.

    PubMed  Google Scholar 

  • Justice, M. J., D. A. Carpenter, J. Favor, A. Neuhauser-Klaus, M. Hrabe de Angelis, D. Soewarto, A. Moser, S. Cordes, D. Miller, V. Chapman, J. S. Weber, E. M. Rinchik, P. R. Hunsicker, W. L. Russell & V. C. Bode, 2000. E. ects of ENU dosage on mouse strains. Mammal Genome 11: 484–488.

    Google Scholar 

  • Justice, M. J., J. K. Noveroske, J. S. Weber, B. Zheng & A. Bradley, 1999. Mouse ENU mutagenesis. Human Mol. Genet. 8: 1955–1963.

    PubMed  Google Scholar 

  • Justice, M. J., B. Zheng, R. P. Woychik & A. Bradley, 1997. Using targeted large deletions and high-efficiency N-ethyl-N-nitrosourea mutagenesis for functional analyses of the mammalian genome. Methods 13: 423–436.

    PubMed  Google Scholar 

  • Kiernan, A. M., A. Erven, S. Voegeling, J. Peters, P. Nolan, J. Hunter, Y. Bacon, K. P. Steel, S. D. M. Brown & J.-L. Guenet, in press. ENU mutagenesis reveals a highly mutable locus on mouse chromosome 4 that affects ear morphogenesis. Mammal. Genome.

  • Kohler, S. W., G. S. Provost, A. Fieck, P. L. Kretz, W. O. Bullock, D. L. Putman, J. A. Sorge & J. M. Short,1991.Analysis of spontaneous and induced mutations in trans-genic mice using a lambda ZAP/lacI shuttle vector. Envi-ron. Mol. Mutagen. 18: 316–321.

    Google Scholar 

  • Lalouette, A., J.-L. Guenet & S. Vriz, 1998. Hotfoot mouse mutations affect the δ2 glutamate receptor gene and are allelic to Lurcher. Genomics 50: 9–13.

    PubMed  Google Scholar 

  • Lewis, S. E., L. B. Barnett, B. M. Sadler & M. D. Shelby, 1992. ENU mutagenesis in the mouse electrophoretic speciffic-locus test. 2. Mutational studies of mature oocytes. Mutat. Res. 296: 129–133.

    PubMed  Google Scholar 

  • Lewis, S. E., L. B. Barnett, B. M. Sadler & M. D. Shelby, 1991.ENU mutagenesis in the mouse electrophoretic speciffic-locus test, 1. Dose-response relationship of electrophoretically-detected mutations arising from mouse spermatogonia treated with ethylnitrosourea. Mutat. Res. 249: 311–315.

    PubMed  Google Scholar 

  • Marshall, R. R., A. S. Raj, F. J. Grant & J. A. Heddle, 1983. The use of two-dimensional electrophoresis to detect mutations induced in mouse spermatogonia by ethylnitrosourea. Can. J. Genet. Cytol. 25: 457–466.

    PubMed  Google Scholar 

  • McDonald, J. D., 1995. Using high-efficiency mouse germline mutagenesis to investigate complex biological phenomena: genetic diseases, behavior, and development. Proc. Soc. Exp. Biol. Med. 209: 303–308.

    PubMed  Google Scholar 

  • McDonald, J. D., V. C. Bode, W. F. Dove & A. Shedlovsky, 1990. The use of N-ethyl-N-nitrosourea to produce mouse models for human phenylketonuria and hyperphenylalaninemia. Prog. Clin. Biol. Res. 340: 407–413.

    Google Scholar 

  • Moser, A. R., H. C. Pitot & W. F. Dove, 1990. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247: 322–324.

    PubMed  Google Scholar 

  • Nadeau, J. H. & W. N. Frankel, 2000. The roads from pheno-typic variation to gene discovery: mutagenesis versus QTLs. Nature Genet. 25: 381–384.

    PubMed  Google Scholar 

  • Nadeau, J. H., J. B. Singer, A. Matin & E. S. Lander, 2000. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 24: 221–225.

    PubMed  Google Scholar 

  • Nolan, P. M., J. Peters, M. Strivens, D. Rogers, J. Hagan, N. Spurr, I. C. Gray, L. Vizor, D. Brooker, E. Whitehill, R. Washbourne, T. Hough, S. Greenaway, M. Hewitt, X. Liu, S. McCormack, K. Pickford, R. Selley, C. Wells, Z. Tymowska-Lalanne, P. Roby, P. Glenister, C. Thornton, C. Thaung, J. A. Stevenson, R. Arkell, P. Mburu, R. Hardisty, A. Kiernan, A. Erven, K. P. Steel, S. Voegeling, J.-L. Guenet, C. Nickols, R. Sadri, M. Nasse, A. Isaacs, K. Davies, M. Browne, E. M. Fisher, J. Martin, S. Rastan, S. D. M. Brown & J. Hunter, 2000. A systematic, genomewide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25: 440–443.

    PubMed  Google Scholar 

  • Noveroske, J. K., J. S. Weber & M. J. Justice, 2000. The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mammal. Genome 11: 478–483.

    Google Scholar 

  • Perou, C. M., K. J. Moore, D. L. Nagle, D. J. Misumi, E. A. Woolf, S. H. McGrail, L. Holmgren, T. H. Brody, B. J. Dussault, Jr., C. A. Monroe, G. M. Duyk, R. J. Pryor, L. Li, M. J. Justice & J. Kaplan, 1996. Identi cation of the murine beige gene by YAC complementation and positional cloning. Nature Genet. 13: 303–308.

    PubMed  Google Scholar 

  • Peters, J., S. T. Ball & S. J. Andrews, 1986. The detection of gene mutations by electrophoresis, and their analysis. Prog. Clin. Biol. Res. 209: 367–374.

    Google Scholar 

  • Peters, J., S. T. Ball & S. J. Andrews, 1986. The detection of gene mutations by electrophoresis, and their analysis. Prog. In Clin. Biol. Res. 209: 367–374.

    Google Scholar 

  • Pillers, D. A., R. G. Weleber, D. G. Green, S. M. Rash, G. Y. Dally, P. L. Howard, M. R. Powers, D. C. Hood, V. M. Chapman, P. N. Ray & W. R. Woodward, 1999. E. ects of dystrophin isoforms on signal transduction through neural retina: genotype-phenotype analysis of Duchenne muscular dystrophy mouse mutants. Mol. Genet. Metabol. 66: 100–110.

    Google Scholar 

  • Rinchik, E. M. & D. A. Carpenter, 1999. N-ethyl-N-nitrosourea mutagenesis of a 6–to 11–cM subregion of the Fah-Hbb interval of mouse chromosome 7: completed testing of 4557 gametes and deletion mapping and complementation analysis of 31 mutations. Genetics 152: 373–383.

    PubMed  Google Scholar 

  • Rinchik, E. M., D. A. Carpenter & P. B. Selby, 1990. A strategy for ne-structure functional analysis of a 6–to 11–centi-morgan region of mouse chromosome 7 by high-efficiencymutagenesis. Proc. Nat. Acad. Sci. USA 87: 896–900.

    PubMed  Google Scholar 

  • Rinchik, E. M., D. A. Carpenter & C. L. Long, 1993. Deletion mapping of four loci de ned by N-ethyl-N-nitrosourea-induced postimplantation-lethal mutations within the pid-Hbb region of mouse chromosome 7. Genetics 135: 1117–1123.

    PubMed  Google Scholar 

  • Röhrborn, G., 1970. The dominant lethals: method and cytogenetic examination of early stages, pp. 148–155 in Chemical Mutagenesis in Mammals and Man, edited by F. Vogel & G. Röhrborn, Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Russell, L. B. & C. S. Montgomery, 1982. Supermutagenicity of ethylnitrosourea in the mouse spot test: comparisons with methylnitrosourea and ethylnitrosourethane. Mutat. Res. 92: 193–204.

    PubMed  Google Scholar 

  • Russell, L. B. & J. W. Bangham, 1991. The paternal genome in mouse zygotes is less sensitive to ENU mutagenesis than the maternal genome. Mutat. Res. 248: 203–209.

    PubMed  Google Scholar 

  • Russell, L. B. & B. E. Matter, 1980. Whole-mammal mutagenic-ity tests: evaluation of five methods. Mutat. Res. 75: 279–302.

    PubMed  Google Scholar 

  • Russell, L. B., J. W. Bangham, K. F. Stelzner & P. R. Hunsicker, 1988a. High frequency of mosaic mutants produced by N-ethyl-N-nitrosourea exposure of mouse zygotes. Proc. Nat. Acad. Sci. USA 85: 9167–9170.

    PubMed  Google Scholar 

  • Russell, W. L., P. R. Hunsicker, D. A. Carpenter, C. V. Cornett & G. M. Guinn, 1982a. Effect of dose fractionation on the ethylnitrosourea induction of Speciffic-locus mutations in mouse spermatogonia. Proc. Nat. Acad. Sci. USA 79: 3592–3593.

    PubMed  Google Scholar 

  • Russell, W. L., P. R. Hunsicker, G. D. Raymer, M. H. Steele, K. F. Stelzner & H. M. Thompson, 1982b. Dose-response curve for ethylnitrosourea-induced Speciffic-locus mutations in mouse spermatogonia. Proc. Nat. Acad. Sci. USA 79: 3589–3591.

    PubMed  Google Scholar 

  • Russell, W. L., D. A. Carpenter & S. Hitotsumachi, 1988b. Effect of X-ray and ethylnitrosourea exposures separated by 24 h on specific-locus mutation frequency in mouse stem-cell spermatogonia. Mutat. Res. 198: 303–307.

    PubMed  Google Scholar 

  • Russell, W. L., E. M. Kelly, P. R. Hunsicker, J. W. Bangham, S. C. Maddux & E. L. Phipps, 1979. Speciffic-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Nat. Acad. Sci. USA 76: 5818–5819.

    PubMed  Google Scholar 

  • Schlager, G. & M. M. Dickie, 1967. Spontaneous mutations and mutation rates in the house mouse. Genetics 57: 319–330.

    PubMed  Google Scholar 

  • Schlager, G. & M. M. Dickie, 1971. Natural mutation rates in the house mouse. Estimates for ve speciffic loci and dominant mutations. Mutat. Res. 11: 89–96.

    PubMed  Google Scholar 

  • Schmezer, P. & C. Eckert, 1999. Induction of mutations in transgenic animal models: BigBlueTM and MutaTMMouse, pp. 367–394 in The Use of Short-and Medium-term Tests for Carcinogens and Data on Genetic E. ects in Carcinogenic Hazard Evaluation, edited by D. B. McGregor, J. M. Rice & S. Venitt, IARC Scientific Publications No. 146. International Agency for Research on Cancer, Lyon.

  • Shedlovsky, A., J.-L. Guenet, L. L. Johnson & W. F. Dove, 1986. Induction of recessive lethal mutations in the T/t-H-2 region of the mouse genome by a point mutagen. Genet. Res. 47: 135–142.

    PubMed  Google Scholar 

  • Shedlovsky, A., T. R. King & W. F. Dove, 1988. Saturation germ line mutagenesis of the murine t region including a lethal allele at the quaking locus. Proc. Nat. Acad. Sci. USA 85: 180–184.

    PubMed  Google Scholar 

  • Shedlovsky, A., J. D. McDonald, D. Symula & W. F. Dove, 1993. Mouse models of human phenylketonuria. Genetics 134: 1205–1210.

    PubMed  Google Scholar 

  • Skopek, T. R., 1995. Of mice and mutants: target size and sensitivity. Mutat. Res. 331: 225–228.

    PubMed  Google Scholar 

  • Tinwell, H., D. Paton, J. B. Guttenplan & J. Ashby, 1996. Unexpected genetic toxicity to rodents of the N ¢, N ¢-dimethyl analogues of MNU and ENU. Environ. Mol.Mutagen. 27: 202–210.

    Google Scholar 

  • Tutois, S., X. Montagutelli, V. Da Silva, H. Jouault, P. Rouyer-Fessard, K. Leroy-Viard, J.-L. Guenet, Y. Nordmann, Y. Beuzard & J. C. Deybach, 1991. Erythropoietic proto-porphyria in the house mouse. A recessive inherited ferrochelatase de ciency with anemia, photosensitivity, and liver disease. J. Clin. Invest. 88: 1730–1736.

    PubMed  Google Scholar 

  • Van Zeeland, A. A., 1988. Molecular dosimetry of alkylating agents: quantitative comparison of genetic effects on the basis of DNAadduct formation. Mutagenesis 3: 179–191.

    PubMed  Google Scholar 

  • Vogel, E. W. & A. T. Natarajan, 1995. DNA damage and repair in somatic and germ cells in vivo. Mutat. Res. 330: 183–208.

    PubMed  Google Scholar 

  • Vogel, F. & G. Röhrborn, 1970. Chemical Mutagenesis in Mammals and Man, Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Weber, J. S., A. Salinger & M. J. Justice, 2000. Optimal N-ethyl-N-nitrosourea (ENU) doses for inbred mouse strains. Genesis: J. Genet. Dev. 26: 230–233.

    Google Scholar 

  • Wilkie, A. O., 1994. The molecular basis of genetic dominance. J. Med. Genet. 31: 89–98.

    PubMed  Google Scholar 

  • Williams, R. W., 1999. A targeted screen to detect recessive mutations that have quantitative effects. Mammal. Genome 10: 734–738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guénet, JL. Chemical mutagenesis of the mouse genome: an overview. Genetica 122, 9–24 (2004). https://doi.org/10.1007/s10709-004-1442-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-004-1442-8

Navigation