Skip to main content
Log in

Methanogenic Octadecene Degradation by Syntrophic Enrichment Culture from Brackish Sediments

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A microbial enrichment culture from brackish sediments was able to grow on octadec-1-ene (an unsaturated aliphatic hydrocarbon) as sole source of carbon and energy, under methanogenic conditions. Octadecene degradation is stopped either when bromoethanesulfonic acid, a selective inhibitor of methanogenesis is introduced, or when hydrogen is introduced. In the presence of bromoethanesulfonic acid, the degradation is restored by the addition of a hydrogenotrophic sulfate-reducing microorganism with sulfate. Results of molecular biodiversity, which revealed the presence of bacteria as well as of acetoclastic and hydrogenotrophic methanogens, are consistent with a syntrophic degradation involving Bacteria and Archaea. This is the first demonstration of syntrophic alkene degradation by microbial communities, showing that syntrophy is more widespread than we could have thought so far. These results highlight the need for a better understanding of microbial interactions and their role in the organic-matter degradation in polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aeckersberg F, Back F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14

    Article  CAS  Google Scholar 

  2. Bianchi G (1995) Plant waxes. In: Hamilton RJ (ed) Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee, pp 175–222

    Google Scholar 

  3. Bonin P, Cravo-Laureau C, Michotey V, Hirschler-Réa A (2004) The anaerobic hydrocarbon biodegrading bacteria: an overview. Ophelia 58:243–254

    Article  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  5. Chang W, Um Y, Holoman TRP (2006) Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis. Biotechnol Lett 28:425–430

    Article  PubMed  CAS  Google Scholar 

  6. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  7. Curiale JA, Frolov EB (1998) Occurrence and origin of olefins in crude oils. A critical review. Org Geochem 29:397–408

    Article  CAS  Google Scholar 

  8. Elshahed MS, McInerney MJ (2001) Is interspecies hydrogen transfer needed for toluene degradation under sulfate-reducing conditions? FEMS Microbiol Ecol 35:163–169

    Article  PubMed  CAS  Google Scholar 

  9. Ficker M, Krastel K, Orlicky S, Edwards E (1999) Molecular characterization of a toluene-degrading methanogenic consortium. Appl Environ Microbiol 65:5576–5585

    PubMed  CAS  Google Scholar 

  10. Gray ND, Sherry A, Grant RJ, Rowan AK, Hubert CRJ, Callbeck CM, Aitken CM, Jones DM, Adams JJ, Larter SR, Head IM (2011) The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13:2957–2975

    Article  PubMed  CAS  Google Scholar 

  11. Grossi V, Cravo-Laureau C, Guyoneaud R, Ranchou-Peyruse A, Hirschler-Réa A (2008) Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: a summary. Org Geochem 39:1197–1203

    Article  CAS  Google Scholar 

  12. Grossi V, Cravo-Laureau C, Rontani J-F, Cros M, Hirschler-Réa A (2011) Anaerobic oxidation of n-alkenes by sulfate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites. Res Microbiol 162:915–922

    Article  PubMed  CAS  Google Scholar 

  13. Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2007) Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73:4119–4127

    Article  PubMed  CAS  Google Scholar 

  14. Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    Article  PubMed  CAS  Google Scholar 

  15. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro IN (ed) Mammalian protein metabolism. Academic Press, New York, pp 211–232

    Google Scholar 

  16. Martens CS, Berner RA (1974) Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185:1167–1169

    Article  PubMed  CAS  Google Scholar 

  17. Mbadinga SM, Li K-P, Zhou L, Wang L-Y, Yang S-Z, Liu J-F, Gu J-D, Mu B-Z (2012) Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3828-8

    PubMed  Google Scholar 

  18. Meckenstock RU (1999) Fermentative toluene degradation in anaerobic defined syntrophic coculture. FEMS Microbiol Lett 177:67–73

    Article  PubMed  CAS  Google Scholar 

  19. Oremland RS, Capone DG (1988) Use of specific inhibitors in biogeochimistry and microbial ecology. In: Marshall KC (ed) Advances in microbial ecology, vol 10. Plenum Press, New York, pp 285–383

    Chapter  Google Scholar 

  20. Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276

    PubMed  CAS  Google Scholar 

  21. Pfennig N, Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3200–3221

    Google Scholar 

  22. Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 926–940

    Google Scholar 

  23. Schink B (1985) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol Ecol 31:69–77

    Article  CAS  Google Scholar 

  24. Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45:5892–5899

    Article  PubMed  CAS  Google Scholar 

  25. Sousa DZ, Smidt H, Alves MM, Stams AJM (2009) Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol Ecol 68:257–272

    Article  PubMed  CAS  Google Scholar 

  26. Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656

    Article  PubMed  CAS  Google Scholar 

  27. Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179

    Article  CAS  Google Scholar 

  28. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3353–3378

    Google Scholar 

  29. Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1998–2021

    Google Scholar 

  30. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Virgile Calvert, Michaël Pigache, and Zied Medfai for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Hirschler-Réa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirschler-Réa, A., Cravo-Laureau, C., Casalot, L. et al. Methanogenic Octadecene Degradation by Syntrophic Enrichment Culture from Brackish Sediments. Curr Microbiol 65, 561–567 (2012). https://doi.org/10.1007/s00284-012-0195-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0195-3

Keywords

Navigation