Skip to main content
Log in

High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of the xylanase promoter and terminator of P. antarctica T-34, a selection cassette of neomycin/G418 with an Escherichia coli neomycin resistance gene under control of the homocitrate synthase promoter of strain T-34, and an autonomously replicating sequence fragment of Ustilago maydis (UARS). Biodegradable plastic (BP)-degrading enzymes of P. antarctica JCM10317 (PaE) and Paraphoma-related fungal strain B47-9 (PCLE) were used as reporter proteins and inserted into pPAX1-neo, resulting in pPAX1-neo::PaCLE1 and pPAX1-neo::PCLE, respectively. Homologous and heterologous BP-degrading enzyme production of transformants of P. antarctica T-34 were detected on agar plates containing xylose and emulsified BP. Recombinant PaE were also produced by transformants of other Pseudozyma strains including Pseudozyma aphidis, Pseudozyma rugulosa, and Pseudozyma tsukubaensis. To improve the stability of transformed genes in cells, the UARS fragment was removed from linearized pPAX1-neo::PaCLE1 and integrated into the chromosome of the P. antarctica strain, GB-4(0), which was selected as a PaE producer in xylose media. Two transformants, GB-4(0)-X14 and X49, had an 11-fold higher activity compared with the wild type strain in xylose-containing liquid media. By xylose fed-batch cultivation using a 3-L jar fermentor, GB-4(0)-X14 produced 73.5 U mL−1 of PaE, which is 13.4-fold higher than that of the wild type strain GB-4(0), which produced 5.5 U mL−1 of PaE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avis TJ, Cheng YL, Zhao YY, Bolduc S, Neveu B, Anguenot R, Labbé C, Belzile F, Bélanger RR (2005) The potential of Pseudozyma yeastlike epiphytes for the production of heterologous recombinant proteins. Appl Microbiol Biotechnol 69:304–311

    Article  CAS  PubMed  Google Scholar 

  • Avis TJ, Record E, Lomascolo A, Scholotmeijer K, Asther M, Wessels JGH, Wösten MAB (2008) Usefulness of heterologous promoters in the Pseudozyma flocculosa gene expression system. Biosci Biotechnol Biochem 72:456–462

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Avis TJ, Bolduc S, Zhao Y, Anguenot R, Neveu B, Labbé C, Belzile F, Bélanger RR (2008) Recombinant protein secretion in Pseudozyma flocculosa and Pseudozyma antarctica with a novel signal peptide. Biosci Biotechnol Biochem 72:3158–3166

    Article  CAS  PubMed  Google Scholar 

  • Fonseca Á, Inácio J (2006) Phylloplane yeasts, Biodiversity and ecophysiology of yeast. Springer, Berlin

    Google Scholar 

  • Hoegh I, Patkar S, Halkier T, Hansen MT (1995) Two lipases from Candida antarctica: cloning and expression in Aspergillus oryzae. Can J Bot 73:869–875

    Article  Google Scholar 

  • Johnson EA (2013) Biotechnology of non-Saccharomyces yeasts — the basidiomycetes. Appl Microbiol Biotechnol 97:7563–7577

    Article  CAS  PubMed  Google Scholar 

  • Kinal H, Tao J, Bruenn JA (1991) An expression vector for the phytopathogenic fungus, Ustilago maydis. Gene 98:129–134

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto D, Akiba S, Hioki C, Tabuchi T (1990) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Biol Chem 54:31–36

    Article  CAS  Google Scholar 

  • Kitamoto HK, Shinozaki Y, Cao X, Konishi M, Morita T, Tago K, Kajiwara H, Koitabashi M, Watanabe T, Sameshima-Yamashita Y, Nakajima-Kambe T, Tsushima S (2011) Phyllosphere yeasts rapidly break down biodegradable plastics. AMB Express 1:44. doi:10.1186/2191-0855-1-44

    Article  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Mann C, Davis RW (1986) Structure and sequence of the centromeric DNA of chromosome 4 in Saccharomyces cerevisiae. Mol Cell Biol 6:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand G, Fortier E, Neveu B, Bolduc S, Belzile F, Bélanger RR (2007) Alternative methods for genetic transformation of Pseudozyma antarctica, a basidomycetous yeast-like fungus. J Microbiol Methods 70:519–527

    Article  CAS  PubMed  Google Scholar 

  • Masaki K, Tsuchioka H, Hirano T, Kato M, Ikeda H, Iefuji H (2012) Construction of a new recombinant protein expression system in the basidomycetous yeast Cryptococcus sp. strain S-2 and enhancement of the production of a cutinase-like enzyme. Appl Microbiol Biotechnol 93:1627–1636

  • Morita T, Habe H, Fukuoka T, Imura T, Kitamoto D (2007) Convenient transformation of anamorophic basidomycetous yeasts belonging to genus Pseudozyma induced by electroporation. J Biosci Bioeng 104:517–520

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Koike H, Hagiwara H, Ito E, Machida M, Sato S, Habe H, Kitamoto D (2014) Genome and transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids. Plos One 9(2):e86490

  • Neveu B, Michaud M, Belzile F, Bélanger RR (2007) The Pseudozyma flocculosa actin promoter allows the strong expression of a recombinant protein in the Pseudozyma species. Appl Microbiol Biotechnol 74:1300–1307

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki Y, Morita T, Cao X, Yoshida S, Koitabashi M, Watanabe T, Suzuki K, Sameshima-Yamashita Y, Kambe-Nakajima T, Fujii T, Kitamoto HK (2013) Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Appl Microbiol Biotechnol 97:2951–2959

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Noguchi MT, Shinozaki Y, Koitabashi M, Sameshima-Yamashita Y, Yoshida S, Fujii T, Kitamoto HK (2014) Purification, characterization, and cloning of the gene for a biodegradable plastic-degrading enzyme from Paraphoma-related fungal strain B47-9. Appl Microbiol Biotechnol 98:4457–4465

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Edman JC, Kwon-Chung KJ (1992) Molecular and genetic analysis of URA5 transformants of Cryptococcus neoformans. Infect Immun 60:1101–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Ikeda H, Masaki K, Fujii T, Iefuji H (2009) Cloning and characterization of novel phytase from wastewater treatment yeast Hansenula fabianii J640 and expression in Pichia pastoris. J Biosci Bioeng 108:225–230

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Shinozaki Y, Yoshida S, Koitabashi M, Sameshima-Yamashita Y, Fujii T, Fukuoka T, Kitamoto HK (2014) Xylose induces the phyllosphere yeast Pseudozyma antarctica to produce a cutinase-like enzyme which efficiently degrades biodegradable plastics. J Biosci Bioeng 117:325–329

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Suzuki K, Sato I, Morita T, Koike H, Shinozaki Y, Ueda H, Koitabashi M, Kitamoto HK (2015) Simultaneous bioethanol distillery wastewater treatment and xylanase production by the phyllosphere yeast Pseudozyma antarctica GB-4(0). AMB Express 5:36. doi:10.1186/s13568-015-012108

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank Professor Haruyuki Iefuji (Ehime University, Japan) and Professor Rinji Akada (Yamaguchi University, Japan) for their helpful discussions, Mrs. Xiao-hong Cao, for her technical assistance, and Mrs. Emi Ito for constructing the plasmid pUXV1-neo. This work was supported by a grant from the Science and Technology Research Promotion Program (25017A) for Agriculture, Forestry, Fisheries and food Industry (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko Kitamoto.

Ethics declarations

Funding

This work was supported by a grant from the Science and Technology Research Promotion Program (25017A) for Agriculture, Forestry, Fisheries and food Industry (Japan).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. S1

(PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, T., Morita, T., Koike, H. et al. High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter. Appl Microbiol Biotechnol 100, 3207–3217 (2016). https://doi.org/10.1007/s00253-015-7232-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7232-7

Keywords

Navigation