Skip to main content
Log in

Flavoprotein oxidases: classification and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This review provides an overview of oxidases that utilise a flavin cofactor for catalysis. This class of oxidative flavoenzymes has shown to harbour a large number of biotechnologically interesting enzymes. Applications range from their use as biocatalysts for the synthesis of pharmaceutical compounds to the integration in biosensors. Through the recent developments in genome sequencing, the number of newly discovered oxidases is steadily growing. Recent progress in the field of flavoprotein oxidase discovery and the obtained biochemical knowledge on these enzymes are reviewed. Except for a structure-based classification of known flavoprotein oxidases, also their potential in recent biotechnological applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Araki K, Inaba K (2012) Structure, mechanism, and evolution of Ero1 family enzymes. Antioxid Redox Signal 16:790–799

    Article  CAS  Google Scholar 

  • Arjunan P, Umland T, Dyda F, Swaminathan S, Furey W, Sax M, Farrenkopf B, Gao Y, Zhang D, Jordan F (1996) Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 Å resolution. J Biol Chem 256:590–600

    CAS  Google Scholar 

  • Bankar SB, Bule MV, Singhal RS, Ananthanaryan L (2009) Glucose oxidase: an overview. Biotechnol Adv 27:489–501

    Article  CAS  Google Scholar 

  • Baron R, Riley C, Chenprakhon P, Thotsaporn K, Winter RT, Alfieri A, Forneris, F, Van Berkel WJH, Chaiyen P, Fraaije W, Mattevi A, McCammon JA (2009) Multiple pathways guide oxygen diffusion into flavoenzyme active sites. PNAS 106:10603–10608.

    Google Scholar 

  • Binzak B, Willard J, Vockley J (1998) Identification of the catalytic redidue of human short/branched chain acyl-CoA dehydrogenase by in vitro mutagenesis. Biochim Biophys Acta 1382:137–142

    Article  CAS  Google Scholar 

  • Bifulco D, Pollegioni L, Tessaro D, Servi S, Molla G (2013) A thermostable L-aspartate oxidase: a new tool for biotechnological applications. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-4688-1

  • Biswal BK, Cherney MM, Wang M, Garen C, James MNG (2005) Structure of Mycobacterium tuberculosis pyridoxine 5’-phosphate oxidase and its complexes with flavin mononucleotide and pyridoxal 5’-phosphate. Acta Crystallogr D: Biol Crystallogr 61:1492–1499

    Article  Google Scholar 

  • Bruckner RC, Jorns MS (2009) Spectral and kinetic characterization of intermediates in the aromatization reaction catalysed by nikD, an unusual amino acid oxidase. Biochemistry 48:4455–4465

    Article  CAS  Google Scholar 

  • Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16:584–593

    Article  CAS  Google Scholar 

  • Chaiyen P, Fraaije MW, Mattevi A (2012) The enigmatic reaction of flavins with oxygen. Trends BiochemSci 37:373–380

    Article  CAS  Google Scholar 

  • Chen Z, Hassan-Abdulah A, Zhao G, Schuman Jorns M, Mathews FS (2006) Heterotetrameric sarcosine oxidase: structure of a diflavin metalloenzyme at 1.85 Å resolution. J Mol Biol 360:1000–1018

    Article  CAS  Google Scholar 

  • Choi KJ, Noh KM, Kim DE, Ha BH, Kim EE, Yoon MY (2007) Identification of the catalytic subunit of acetohydroxyacid synthase in Haemophilus influenzae and its potent inhibitors. Arch Biochem Biophys 466:24–30

    Article  CAS  Google Scholar 

  • Coulombe R, Yue KQ, Ghisla S, Vrielink A (2001) Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg–Glu pair. J Biol Chem 276:30435–30441

    Article  CAS  Google Scholar 

  • Cunane LM, Barton JD, Chen Z, Diêp Lê KH, Amar D, Lederer F, Mathews FS (2005) Crystal structure analysis of recombinant rat kidney long chain hydroxyl acid oxidase. Biochem 44:1521–1531

    Article  CAS  Google Scholar 

  • Debeurme F, Picciocchi A, Dagher MC, Grunwald D, Beaumel S, Fieschi F, Stasia MJ (2010) Regulation of NADPH oxidase activity in phagocytes relationship between FAD/NADPH binding and oxidase complex assembly. J Biol Chem 285:33197–33208

    Article  CAS  Google Scholar 

  • Decker K, Dai VD (1967) Mechanism and specificity of L- and D-6-hydroxynicotine oxidase. Eur J Biochem 3:132

    Article  CAS  Google Scholar 

  • Digits JA, Pyun H-J, Coates RM, Casey PJ (2002) Stereospecificity and kinetic mechanism of human prenylcysteine lyase, an usual thioether oxidase. J Biol Chem 277:41086–41093

    Article  CAS  Google Scholar 

  • Di Salvo ML, Contestabile R, Safo MK (2011) Vitamin B6 salvage enzymes: mechanism, structure and regulation. Biochim Biophys Acta 1814:1597–1608

    Article  Google Scholar 

  • Endo T, Yamano K, Kawano S (2010) Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Antioxid Redox Sign 13:1359–1373

    Article  CAS  Google Scholar 

  • Fan F, Ghanem M, Gadda G (2004) Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance. Arch Biochim Biophys 421:149–158

    Article  CAS  Google Scholar 

  • Fass D (2008) The Erv family of sulfhydryl oxidases. Biochim Biophys Acta 1783:557–566

    Article  CAS  Google Scholar 

  • Fetzner S, Steiner RA (2010) Cofactor-independent oxidases and oxygenases. Appl Microbiol Biotechnol 86:791–804

    Article  CAS  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–222

    Article  CAS  Google Scholar 

  • Fitzpatrick PF (2010) Oxidation of amines by flavoproteins. Arch Biochem Biophys 493:13–25

    Article  CAS  Google Scholar 

  • Fraaije MW, Veeger C, van Berkel WJH (1995) Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Eur J Biochem 234:271–277

    Article  CAS  Google Scholar 

  • Fraaije MW, van Berkel WJ, Benen JA, Visser J, Mattevi A (1998) A novel oxidoreductase family sharing a conserved FAD-binding domain. Trends Biochem Sci 23:206–207

    Article  CAS  Google Scholar 

  • Fraaije MW, van den Heuvel RHH, van Berkel WJH, Mattevi A (1999) Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase. J BiolChem 274:35514–35520

    CAS  Google Scholar 

  • Fraaije MW, Mattevi A (2000) Flavoenzymes: diverse catalysts with recurrent features. Trends BiochemSci 25:126–132

    Article  CAS  Google Scholar 

  • Furuichi M, Suzuki N, Dhakshnamoorthy B, Minagawa H, Yamagishi R, Watanabe Y, Goto Y, Kaneko H, Yoshida Y, Yagi H, Waga I, Kuamr PKR, Mizuno H (2008) X-ray structure of Aerococcus viridans lactate oxidase and its complex with D-lactate at pH 4.5 show an α-hydroxyacid oxidation mechanism. J Mol Biol 378:436–446

    Article  CAS  Google Scholar 

  • Gadda G (2012) Oxygen activation in flavoprotein oxidases: the importance of being positive. Biochemistry 51:2662–2669

    Article  CAS  Google Scholar 

  • Gross E, Kastner DB, Kaiser CA, Fass D (2004) Structure of Ero1p, source of disulphide bonds for oxidative protein folding in the cell. Cell 117:601–610

    Article  CAS  Google Scholar 

  • Guengerich FP (2012) Thematic minireview series: Metals in Biology 2012. J Biol Chem 287:13508–13509, and references therein

    Article  CAS  Google Scholar 

  • Guo PC, Ma YL, Jiang YL, Wang SJ, Bao ZZ, Yu XJ, Chen Y, Zhou CZ (2012) Structure of yeast sulfhydryl oxidase Erv1 reveals electron transfer of the disulfide relay system in the mitochondrial intermembrane space. J Biol Chem 42:34961–34969

    Article  Google Scholar 

  • Hanson RL, Davis BL, Goldberg SL, Johnston RM, Parker WL, Tully TP, Montana MA, Patel RN (2008) Enzymatic preparation of a D-amino acid from a racemic amino aicd or keto acid. Org Proc Res Dev 12:1119–1129

    Article  CAS  Google Scholar 

  • van Hellemond EW, van Dijk M, Heuts DPHM, Janssen DB, Fraaije MW (2008) Discovery and characterization of a putrescine oxidase from Rhodococcus erythropolis NCIMB 11540. Appl Microbiol Biotechnol 78:455–463

    Article  Google Scholar 

  • Heuts DPHM, Janssen DB, Fraaije MW (2007a) A) Changing the substrate specificity of a chitooligosaccharide oxidase from Fusarium graminearum by model-inspired site-directed mutagenesis. FEBS L 581:4905–4909

    Article  CAS  Google Scholar 

  • Heuts DPHM, van Hellemond EW, Janssen DB, Fraaije MW (2007b) B) Discovery, characterization, and kinetic analysis of an alditol oxidase from Streptomyces coelicolor. J Biol Chem 282:2028320291

    Article  Google Scholar 

  • Heuts DPHM, Scrutton NS, McIntire WS, Fraaije MW (2009) What’s in a covalent bond? On the role and formation of covalently bound flavin cofactors. FEBS J 276:3405–3427

    Article  CAS  Google Scholar 

  • Jin J, Mazon H, van den Heuvel RHH, Janssen DB, Fraaije MW (2007) Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. FEBS J 274:2311–2321

    Article  CAS  Google Scholar 

  • Kasahara K, Miyamoto T, Fujimoto T, Oguri H, Tokiwano T, Oikawa H, Ebizuka Y, Fujii I (2010) Solanapyrone synthase, a possible Diels–Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. Chem Bio Chem 11:1245–1252

    Article  CAS  Google Scholar 

  • Kazarinoff MN, McCormick DB (1973) N-(5’-phospho-4’-pyridoxyl) amines as substrates for pyridoxine (pyridoxamine) 5’-phosphate oxidase. Biochem Biophys Res Commun 52:440–446

    Article  CAS  Google Scholar 

  • Kazarinoff MN, McCormick DB (1975) Rabbit liver pyridoxamine (pyridoxine) 5’-phosphate oxidase. Purification and properties. J Biol Chem 250:3436–3442

    CAS  Google Scholar 

  • Kiess M, Hecht HJ, Kalisz HM (1998) Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with the other glucose-methanol-choline (GMC) oxidoreductases. Eur J Biochem 252:90–99

    Article  CAS  Google Scholar 

  • Leferink NGH, Heuts DPHM, Fraaije MW, van Berkel WJH (2008) The growing VAO flavoprotein family. Arch Biochem Biophys 474:292–301

    Article  CAS  Google Scholar 

  • Leferink NGH, Fraaije MW, Joosten HJ, Schaap PJ, Mattevi A, van Berkel WJH (2009) Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases. J Biol Chem 284:4392–4397

    Article  CAS  Google Scholar 

  • Leys D, Basran J, Scrutton NS (2003) Channeling and formation of 'active' formaldehyde in dimethylglycine oxidase. EMBO J 22:4038–4048

    Article  CAS  Google Scholar 

  • Li Y, Gao Z, Hou H, Zhang J, Yang H, Dong Y, Tan H (2011) Crystal structure and site-directed mutatgenesis of a nitroalkane oxidase from Streptomyces ansochromogenes. Biochem Biophys Res Commun 405:344–348

    Article  CAS  Google Scholar 

  • Macheroux P, Kappes B, Ealick SE (2011) Flavogenomics—a genomic and structural view of flavin-dependent proteins. FEBS J 278:2625–2634

    Article  CAS  Google Scholar 

  • Mattevi A, Fraaije MW, Coda A, van Berkel WJH (1997) Crystallization an preliminary x-ray analysis of the flavoenzyme vanillyl-alcohol oxidase from Penicillium simplicissimum. Proteins 27:601–603

    Article  CAS  Google Scholar 

  • Mattevi A (2006) To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Trends Biochem Sci 31:276–283

    Article  CAS  Google Scholar 

  • Muller YA, Schumacher G, Rudolph R, Schultz GE (1994) The refined structure of a stabilized mutant and of wild-type pyruvate oxidasse from Lactobacillus plantarum. J Mol Biol 237:315–335

    Article  CAS  Google Scholar 

  • Netto CGCM, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym 85–86:71–92

    Article  Google Scholar 

  • Nishino T, Okamoto K, Kawaguchi Y, Hori H, Matsumura T, Eger BT, Pai EF, Nishino T (2005) Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase. J Biol Chem 280:2488–24894

    Article  Google Scholar 

  • Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T (2008) Mammalian xanthine oxidoreductases—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275:3278–3289

    Article  CAS  Google Scholar 

  • Pauff JM, Hemann CF, Junemann N, Leimkuhler S, Hille R (2007) The role of arginine 310 in catalysis and substrate specificity in xanthine dehydrogenase from Rhodobacter capsulatus. J Biol Chem 282:12785–12790

    Article  CAS  Google Scholar 

  • Patel RN, Chen Y, Goldberg SL, Hanson RL, Goswami A, Tully TP, Parker WL (2007) PCT Int. Appl WO 2007112299 A2 20071004, CAN147:425649:1120352.

  • Patel RN (2011) Biocatalysis: synthesis of key intermediates for development of pharmaceuticals. ACS Catal 1:11056–1074

    Article  Google Scholar 

  • Pedotti M, Rosini E, Molla G, Moschetti T, Savino C, Vallone PL (2009) Glyphosate resistance by engineering the flavoenzyme glycine oxidase. J BiolChem 284:36415–36423

    CAS  Google Scholar 

  • Pillone MS, Pollegioni L (2002) D-amino acid oxidase as an industrial biocatalyst. BiocatBiotrans 20:145–159

    Article  Google Scholar 

  • Pollard MG, Travers KJ, Weissman JS (1998) Ero1P: novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1:171–82

    Article  CAS  Google Scholar 

  • Pollegioni L, Molla G, Sacchi S, Rosini E, Verga R, Pilone MS (2008) Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Appl Microbiol Biotech 78:1–16

    Article  CAS  Google Scholar 

  • Qian Y, Zheng J, Lin Z (2013) Loop engineering of amadoriase II and mutational cooperativity. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-4705-4

  • Resch V, Schrittwieser JH, Wallner S, Macheroux P, Kroutil W (2011) Biocatalytic oxidative C–C bond formation catalysed by the berberine bridge enzyme: optimal reaction conditions. Adv Synth Catal 353:2377–2383

    Article  CAS  Google Scholar 

  • Resch V, Lechner H, Schrittwieser JH, Wallner S, Gruber K, Macheroux P, Kroutil W (2012) Inverting the regioselectivity of the Berberine Bridge Enzyme by employing customized fluorine-containing substrates. Chem Eur J 18:13173–13179

    Article  CAS  Google Scholar 

  • Ridge PG, Zhang Y, Gladyshev VN (2008) Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS One 3:e1378

    Article  Google Scholar 

  • Roth JP, Klinman JP (2003) Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase. PNAS 100:62–67

    Article  CAS  Google Scholar 

  • Schrittwieser JH, Resch V, Sattler JH, Lienhart WD, Durchschein K, Winkler A, Gruber K, Macheroux P, Kroutil W (2011a) Biocatalytic enantioselective oxidative C–C coupling by aerobic C–H activation. Angew Chem Int Ed 50:1068–1071

    Article  CAS  Google Scholar 

  • Schrittwieser JH, Resch V, Wallner V, Lienhart WD, Sattler JH, Resch J, Macheroux P, Kroutil W (2011b) Biocatalytic organic synthesis of optically pure (S)-scoulerine and berbine and benzylisoquinoline alkaloids. J Org Chem 76:6703–6714

    Article  CAS  Google Scholar 

  • Thorpe C, Hoober KL, Raje S, Glynn NM, Burnside J, Turi GK, Coppock DL (2002) Sulfhydryl oxidases: emerging catalysts of protein disulphide bond formation in eukaryotes. Arch Biochem Biophys 405:1–12

    Article  CAS  Google Scholar 

  • Tittmann K, Wille G, Golbik R, Weidner A, Ghisla S, Hübner G (2005) Redical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via transient FAD semiquinone/hydrogyethyl-THDP radical pair. Biochemistry 44:13291–13303

    Article  CAS  Google Scholar 

  • Tokuoka K, Nakajima Y, Hirotsu K, Miyahara I, Nishina Y, Shiga K, Tamaoki H, Setoyama C, Tojo H, Miura R (2006) Three-dimensional structure of rat-liver Acyl-CoA oxidase in complex with a fatty acid: insights into substrate-recognition and reactivity toward molecular oxygen. J Biochem 139:789–795

    Article  CAS  Google Scholar 

  • Tormos JR, Taylor AB, Daubner SC, Hart PJ, Fitzpatrick PF (2010) Identification of a hypothetical protein from Podospora anserine as a nitroalkane oxidase. Biochemistry 24:5035–5041

    Article  Google Scholar 

  • Trickey P, Wagner MA, Schuman Jorns M, Mathews FS (1999) Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme. Structure 7:331–345

    Article  CAS  Google Scholar 

  • Turner NJ (2011) Enantioselective oxidation of C–O and C–N bonds using oxidases. Chem Rev 111:4073–4087

    Article  CAS  Google Scholar 

  • Umena Y, Yorita K, Matsuoka K, Kita A, Fukui K, Morimoto Y (2006) The crystal structure of L-lactate oxidase from Aerococcus viridans at 2.1 Å resolution reveals the mechanism of strict substrate recognition. Biochemistry 350:249–256

    CAS  Google Scholar 

  • Winkler A, Lyskowski A, Riedl S, Puhl M, Kutchan TM, Macheroux P, Gruber K (2008) A concerted mechanism for berberine bridge enzyme. Nat Chem Biol 4:739–741

    Article  CAS  Google Scholar 

  • Winter RT, Fraaije MW (2012) Applications of flavoprotein oxidases in organic synthesis: novel reactivities that go beyond amine and alcohol oxidation. Curr Org Chem 16:2542–2550

    Article  CAS  Google Scholar 

  • Winter RT, Heuts DPHM, Rijpkema EMA, van Bloois E, Wijma HJ, Fraaije MW (2012) Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolytics 11B. Appl Microbiol Biotech 95:389–403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.W. Fraaije and A. Mattevi received support from the European Union's Seventh Framework Programme (FP7/2007-2013), project Oxygreen (grant agreement no. 212281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco W. Fraaije.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dijkman, W.P., de Gonzalo, G., Mattevi, A. et al. Flavoprotein oxidases: classification and applications. Appl Microbiol Biotechnol 97, 5177–5188 (2013). https://doi.org/10.1007/s00253-013-4925-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4925-7

Keywords

Navigation