Skip to main content
Log in

The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This study aimed to quantify the changes caused by varying germination conditions on the contents of some bioactive compounds in barley and oats. Samples of the two grains were germinated at temperatures between 10 and 20 °C for a period of 2–6 days, using a two-dimensional central composite design. The germination temperature had only minor effect in comparison with the germination time. Slight changes in the mineral content of the malts were observed, mainly caused by steeping. Phytate has been seen as an anti-nutritional compound, as it complexes minerals and lowers their bioavailability. The phytate content in barley malts was considerably lower than in the native kernels. Variations in the germination conditions did not have a significant effect on phytate content. In oats, degradation of phytate was significantly enhanced by prolonging the germination period. It was possible to retain the amounts of soluble dietary fibre, when short germination periods were applied. However, long germination periods caused an extensive breakdown of soluble dietary fibre, especially beta-glucan. The content of insoluble fibre, however, was increased by applying long germination periods for oat malts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Belitz H-D, Grosch W, Schieberle P (2001) Lehrbuch der Lebensmittelchemie, 5th edn. Springer, Berlin

    Google Scholar 

  2. Briggs DE (1998) Malts and malting. Blackie Academic and Professional, London

    Google Scholar 

  3. Aufhammer W (2003) Rohstoff Getreide. Eugen Ulmer GmbH & Co, Stuttgart

    Google Scholar 

  4. Kaukavirto-Norja A, Wilhelmson A, Poutanen K (2004) Agric Food Sci 13:100–112

    Article  Google Scholar 

  5. Charalampopoulos D, Wang R, Pandiella SS, Webb C (2002) Int J Food Microbiol 79:131–141

    Article  CAS  Google Scholar 

  6. Voragen AGJ (1998) Trends Food Sci Tech 9:328–335

    Article  CAS  Google Scholar 

  7. Cui SW, Wang Q (2009) Struct Chem 20:291–297

    Article  CAS  Google Scholar 

  8. Peterson DM (1998) Cereal Chem 75(2):230–234

    Article  Google Scholar 

  9. Woods PJ (2007) J Cereal Sci 46:230–238

    Article  Google Scholar 

  10. Temelli F, Bansema C, Stobbe K (2004) Cereal Chem 81:499–503

    Article  CAS  Google Scholar 

  11. Brennan CS, Cleary LJ (2005) J Cereal Sci 42:1–13

    Article  CAS  Google Scholar 

  12. Wilhelson A, Oksman-Caldentey K-M, Laitila A, Kaukovirta-Norja A, Poutanen K (2001) Cereal Chem 78(6):715–720

    Article  Google Scholar 

  13. Frölich W, Nyman M (1988) J Cereal Sci 7:73–82

    Article  Google Scholar 

  14. Sandström B, Almgren A, Kvistö B, Cederblad Å (1987) J Nutr 117:1898–1902

    Google Scholar 

  15. Harland BF, Morris ER (1995) Nutr Res 15(5):733–754

    Article  CAS  Google Scholar 

  16. Zhou JR, Erdman JW (1995) Crit Rev Food Sci Nutr 35:495–508

    Article  CAS  Google Scholar 

  17. Reddy NR, Sathe SK, Sahlunke DK (1982) Adv Food Res 28:1–92

    CAS  Google Scholar 

  18. Centeno C, Viveros A, Brenes A, Canales R, Lozano A, de la Cuadra C (2001) J Agric Food Chem 49:3208–3215

    Article  CAS  Google Scholar 

  19. Bartnik M, Szafranszka I (1987) J Cereal Sci 5(1):23–28

    Article  CAS  Google Scholar 

  20. Rossander–Hulten L, Gleerup A, Hallbergh L (1990) Eur J Clinic Nutr 44:783–791

    Google Scholar 

  21. Sandström B, Cederblad A, Stenquist B, Andersson H (1990) Eur J Clinic Nutr 44(10):705–708

    Google Scholar 

  22. Graf E, Eaton JW (1993) Nutr Cancer 19:11–19

    Article  CAS  Google Scholar 

  23. Box GEP, Hunter W, Hunter J (1978) Statistics for experimentiers. Wiley Inc, New York

    Google Scholar 

  24. Lintschinger J, Fuchs N, Moser J, Kuehnelt D, Goessler W (2000) J Agric Food Chem 48:5362–5368

    Article  CAS  Google Scholar 

  25. Salama A-RA, El-Sahn MA, Mesallam AS, El-Tabey S (1997) J Sci Food Agric 75:50–56

    Article  CAS  Google Scholar 

  26. Ekholm P, Virkki L, Ylinen M, Johansson L (2003) Food Chem 80:165–170

    Article  CAS  Google Scholar 

  27. Larsson M, Sandberg A-S (1992) J Food Sci 57(4):994–997

    Article  CAS  Google Scholar 

  28. Larsson M, Sandberg A-S (1995) J Cereal Sci 21:87–95

    Article  CAS  Google Scholar 

  29. Alminger M (2006) Sveriges Utsaedesfoerenings Tidskrift 116(1/2):3–13

    Google Scholar 

  30. Slavin JL, Jacobs D, Marquart L (2001) Critic Rev Biotechnol 21(1):49–66

    Article  CAS  Google Scholar 

  31. Holtekjølen AK, Uhlen AK, Bråthen E, Sahlstrøm S, Knutsen SH (2006) Food Chem 94:348–358

    Article  Google Scholar 

  32. Lee YR, Kim JY, Woo KS, Hwang IG, Kim KH, Kim KJ, Kim JH, Jeong HS (2007) Food Sci Biotechnol 16(6):1006–1010

    CAS  Google Scholar 

  33. Sungurtas J, Swanston JS, Davies HV, McDougall GJ (2004) J Cereal Sci 39(2):273–281

    Article  CAS  Google Scholar 

  34. Köhler P, Hartmann G, Wieser H, Rychlik M (2007) J Agric Food Chem 55:4678–4683

    Article  Google Scholar 

Download references

Acknowledgments

The help of J. C. Oliveira, Department of Food and Process Engineering, University College Cork with developing the experimental design, is gratefully acknowledged. Funding for this research was provided under the Irish National Development Plan, through the Food Institutional Research Measure, administered by the Department of Agriculture, Fisheries & Food, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke K. Arendt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hübner, F., O’Neil, T., Cashman, K.D. et al. The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley. Eur Food Res Technol 231, 27–35 (2010). https://doi.org/10.1007/s00217-010-1247-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1247-1

Keywords

Navigation