Skip to main content
Log in

Potential of cold gas dynamic spray as additive manufacturing technology

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, the application of cold spray (CS) coating deposition technology as additive manufacturing technique is discussed. Absence of material melting during CS deposition permits to obtain deposits with low value of residual stresses and to preserve the phase composition of source material which is a very important advantage. In this paper, the latest developments in the field of cold spray such as micronozzle device and new multimaterial deposition approach permitting to significantly enlarge the potential of cold spray as additive manufacturing technology is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheah CM, Chua CK, Lee CW, Feng C, Totong K (2005) Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. Int J Adv Manuf Technol 25:308–320

    Article  Google Scholar 

  2. Pham DT, Gault RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38:1257–1287

    Article  Google Scholar 

  3. Yadroitsev I, Thivillon L, Bertrand P, Smurov I (2007) Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Appl Surf Sci 254:980–983

    Article  Google Scholar 

  4. Bartolo PJS, Almeida HA, Alves NF (2008) Virtual and rapid manufacturing: advanced research in virtual and rapid prototyping. Taylor & Francis Group, London

    Google Scholar 

  5. Yadroitsev I (2010) Selective laser melting: Direct manufacturing of 3D-objects by selective laser melting of metal powders. LAP Lambert Acad. Publ

  6. Cadney S, Brochu M, Richer P, Jodoin B (2008) Cold gas dynamic spraying as a method for freeforming and joining materials. Surf Coat Technol 202:2801–2806

    Article  Google Scholar 

  7. Pattison J, Celotto S, Morgan R, Bray M, O’Neill W (2007) Cold gas dynamic manufacturing: a nonthermal approach to freeform fabrication. Int J Mach Tools Manuf 47(3–4):627–634

    Article  Google Scholar 

  8. Papyrin A, Kosarev V, Klinkov S, Alkhimov A, Fomin V (2007) Cold spray technology. Elsevier Science, Amsterdam

    Google Scholar 

  9. Kosarev V, Klinkov S, Rein M (2005) Cold spray deposition: significance of particle impact phenomena. Aerosp Sci Technol 9(7):582–591

    Article  Google Scholar 

  10. Assadi H, Schmidt T, Richter H, Kliemann JO, Binder K, Gartner F et al (2011) On parameter selection in cold spraying. J Therm Spray Tech 20(6):1161–1176

    Article  Google Scholar 

  11. Schmidt T, Assadi H, Gartner F, Richter H, Stoltenhoff T, Kreye H et al (2009) From particle acceleration to impact and bonding in cold spraying. J Therm Spray Tech 18:794–808

    Article  Google Scholar 

  12. Ajdelsztajn L, Jodoin B, Kim GE, Schoenung JM (2005) Cold spray deposition of nanocrystalline aluminum alloys. Metall Mater Trans 36(3):657–666

    Article  Google Scholar 

  13. Koh PK, Cheang P, Loke K, Yu SCM, Ang SM. Deposition of Amorphous Aluminum Powder Using Cold Spray. Thermal Spray 2012: Proceedings from the International Thermal Spray Conference and Exposition. Houston, Texas, USA, May 21–24; 2012.p. 249–53.

  14. Ajdelsztajn L, Jodoin B, Richer P, Sansoucy E, Lavernia EJ (2006) Cold gas dynamic spraying of iron-base amorphous alloy. J Therm Spray Tech 15(4):495–500

    Article  Google Scholar 

  15. Wanga Q, Birbilisb N, Zhanga MX (2011) Interfacial structure between particles in an aluminum deposit produced by cold spray. Mater Lett 65(11):1576–1578

    Article  Google Scholar 

  16. Van Steenkiste TH, Smith JR, Teets RE (2002) Aluminum coatings via kinetic spray with relatively large powder particles. Surf Coat Technol 154:237–252

    Article  Google Scholar 

  17. Balani K, Laha T, Agarwal A, Karthikeyan J, Munroe N (2005) Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating. Surf Coat Technol 195:272–279

    Article  Google Scholar 

  18. Easona PD, Fewkesa JA, Kennett SC, Eden TJ, Tello K, Kaufman MJ et al (2011) On the characterization of bulk copper produced by cold gas dynamic spray processing in as fabricated and annealed conditions. Mater Sci Eng 528:8174–8178

    Article  Google Scholar 

  19. Stoltenhoff T, Kreye H, Richter HJ (2002) An analysis of the cold spray process and its coatings. J Therm Spray Tech 11(4):542–550

    Article  Google Scholar 

  20. Wong W, Irissou E, Ryabinin AN, Legoux JG, Yue S (2011) Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings. J Therm Spray Tech 20(1–2):213–226

    Article  Google Scholar 

  21. Hussain T (2013) Cold spraying of titanium: a review of bonding mechanisms, microstructure, and properties. Key Eng Mater 533:53–90

    Article  Google Scholar 

  22. Maev RG, Leshchynsky V (2006) Air gas dynamic spraying of powder mixtures: theory and application. J Therm Spray Tech 15(2):198–205

    Article  Google Scholar 

  23. Maev RG, Leshchynsky V (2008) Introduction to low pressure gas dynamic spray: physics & technology. Wiley-VCH, Weinheim

    Google Scholar 

  24. Shkodkin A, Kashirin A, Klyuev O, Buzdygar T (2006) Metal particle deposition stimulation by surface abrasive treatment in gas dynamic spraying. J Therm Spray Tech 15:382–385

    Article  Google Scholar 

  25. Kim HJ, Lee CH, Hwang SY (2005) Superhard nano WC–12 % Co coating by cold spray deposition. Mater Sci Eng 391(1–2):243–248

    Google Scholar 

  26. Kim HJ, Lee CH, Hwang SY (2005) Fabrication of WC–Co coatings by cold spray deposition. Surf Coat Technol 191(2–3):335–340

    Article  Google Scholar 

  27. Kroemmer W, Heinrich P, Richter P. Cold Spraying—Equipment and Application Trends. Proceedings from the International Thermal Spray Conference and Exposition: Thermal Spray 2003: Advancing the Science and Applying the Technology, Orlando, USA, May 5–8, 2003, p 97–102

  28. Fukanuma H, Ohno N, Sun B, Huang R (2006) In-flight particle velocity measurements with DPV-2000 in cold spray. Surf Coat Technol 201:1935–1941

    Article  Google Scholar 

  29. Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Tech 7(2):205–212

    Article  Google Scholar 

  30. Kosarev VF, Klinkov SV, Alkhimov AP, Papyrin AN (2003) On some aspects of gas dynamics of cold spray process. J Therm Spray Tech 12(2):265–281

    Article  Google Scholar 

  31. Alkhimov AP, Kosarev VF, Klinkov SV (2000) The features of cold spray nozzle design. J Therm Spray Tech 10(2):375–381

    Article  Google Scholar 

  32. Sova A, Klinkov S, Kosarev V, Ryashin N, Smurov I (2012) Preliminary study on deposition of aluminum and copper powders by cold spray micronozzle using helium. Surf Coat Technol 220:98–101

    Article  Google Scholar 

  33. Sova A, Okunkova A, Grigoriev S, Smurov I (2013) Velocity of the particles accelerated by a cold spray micronozzle: experimental measurements and numerical simulation. J Therm Spray Tech 22(1):75–80

    Article  Google Scholar 

  34. Klinkov SV, Kosarev VF, Zaikovskii VN (2011) Influence of flow swirling and exit shape of barrel nozzle on cold spraying. J Therm Spray Tech 20(4):837–844

    Article  Google Scholar 

  35. Pattison J, Celotto S, Morgan R, O’Neill W. Cold spray nozzle design and performance evaluation using particle image velocimetry. Proceedings of International Thermal Spray Conference, Basel, Switzerland, 2–4 May, 2005, p. 239–245.

  36. Gilmore DL, Dykhuizen RC, Neiser RA, Roemer TJ, Smith MF (1999) Particle velocity and deposition efficiency in the cold spray process. J Therm Spray Tech 8(4):576–582

    Article  Google Scholar 

  37. Legoux JG, Irissou E, Moreau C (2007) Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc, and tin coatings. J Therm Spray Tech 16(5–6):619–625

    Article  Google Scholar 

  38. Bala N, Singh H, Prakash S (2010) High-temperature corrosion behavior of cold spray Ni-20Cr coating on boiler steel in molten salt environment at 900 °C. J Therm Spray Tech 19(1–2):110–118

    Article  Google Scholar 

  39. Ajdelsztajn L, Jodoin B, Schoenung JM (2006) Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying. Surf Coat Technol 201:1166–1172

    Article  Google Scholar 

  40. Koivuluoto H, Lagerbom J, Vuoristo P (2007) Microstructural studies of cold sprayed copper, nickel, and nickel-30 %copper coatings. J Therm Spray Tech 16(4):488–497

    Article  Google Scholar 

  41. Li WY, Liao H, Douchy G, Coddet C (2007) Optimal design of a cold spray nozzle by numerical analysis of particle velocity and experimental validation with 316 L stainless steel powder. Mater Des 28(7):2129–2137

    Article  Google Scholar 

  42. Spencer K, Zhang MX (2011) Optimisation of stainless steel cold spray coatings using mixed particle size distributions. Surf Coat Technol 205:5135–5140

    Article  Google Scholar 

  43. Koivuluoto H, Nakki J, Vuoristo P (2009) Corrosion properties of cold-sprayed tantalum coatings. J Therm Spray Tech 18(1):75–82

    Article  Google Scholar 

  44. Suo K, Guo XP, Li WY, Planche MP, Liao H (2012) Investigation of deposition behavior of cold-sprayed magnesium coating. J Therm Spray Tech 21(5):831–837

    Article  Google Scholar 

  45. Rolland G, Sallamand P, Guipont V, Jeandin M, Boller E, Bourda C (2012) Damage study of cold-sprayed composite materials for application to electrical contacts. J Therm Spray Tech 21(5):758–772

    Article  Google Scholar 

  46. Wielage B, Grund T, Rupprecht C, Kuemmel S (2010) New method for producing power electronic circuit boards by cold-gas spraying and investigation of adhesion mechanisms. Surf Coat Technol 205(4):1115–1118

    Article  Google Scholar 

  47. Sova A, Pervushin D, Smurov I (2010) Development of multimaterial coatings by cold spray and gas detonation spraying. Surf Coat Technol 205:1108–1114

    Article  Google Scholar 

  48. Al-Mangour B, Mongrain R, Irissou E, Yue S (2013) Improving the strength and corrosion resistance of 316L stainless steel for biomedical application using cold spray. Surf Coat Technol 216:297–307

    Article  Google Scholar 

  49. Wu X, Zhou X, Cui H, Zheng X, Zhang J (2012) Deposition behavior and characteristics of cold-sprayed Cu–Cr composite deposits. J Therm Spray Tech 21(5):792–799

    Article  Google Scholar 

  50. Novoselova T, Fox P, Morgan R, O’Neill W (2006) Experimental study of titanium/aluminum deposits produced by cold gas dynamic spray. Surf Coat Technol 200(8):2775–2783

    Article  Google Scholar 

  51. Wang HT, Li CJ, Yang GJ, Li CX (2008) Cold spraying of Fe/Al powder mixture: coating characteristics and influence of heat treatment on the phase structure. Appl Surf Sci 255(5):2538–2544

    Article  Google Scholar 

  52. Klinkov SV, Kosarev VF, Sova AA, Smurov I (2008) Deposition of multicomponent coatings by cold spray. Surf Coat Technol 202:5858–5862

    Article  Google Scholar 

  53. Irissou E, Legoux JG, Arsenault B, Moreau C (2007) Investigation of Al-Al2O3 cold spray coating formation and properties. J Therm Spray Tech 16:661–668

    Article  Google Scholar 

  54. Koivuluoto H, Vuoristo P (2010) Effect of powder type and composition on structure and mechanical properties of Cu + Al2O3 coatings prepared by using low-pressure cold spray process. J Therm Spray Tech 19(5):1081–1092

    Article  Google Scholar 

  55. Koivuluoto H, Vuoristo P (2009) Effect of ceramic particles on properties of cold-sprayed Ni-20Cr + Al2O3 coatings. J Therm Spray Tech 18(4):555–562

    Article  Google Scholar 

  56. Sova A, Kosarev VF, Papyrin A, Smurov I (2011) Effect of ceramic particle velocity on cold spray deposition of metal–ceramic coatings. J Therm Spray Tech 20(1–2):285–291

    Article  Google Scholar 

  57. Binder K, Gärtner F, Klassen T. Cold spraying of titanium using enhanced conditions and optimized nozzles. Proceeding of International Thermal Spray Coatings ITSC 2011, Hamburg, Germany, September 27 – 29, 2011

  58. Lee JC, Kang HJ, Chu WS, Ahn SH (2007) Repair of damaged mold surface by cold-spray method. CIRP Ann 56(1):577–580

    Article  Google Scholar 

  59. Bailly O, Laguionie T, Bianchi L, Vardelle M, Vardelle A, Residual stress measurements in cold sprayed tantalum coatings. Proceedings from the International Thermal Spray Conference and Exposition ITSC 2012, Houston, Texas, USA, May 21–24, 2012, p.271-276

  60. Spencer K, Luzin V, Matthews N, Zhang MX (2012) Residual stresses in cold spray Al coatings: the effect of alloying and of process parameters. Surf Coat Technol 20:4249–4255

    Article  Google Scholar 

  61. Luzin V, Spencer K, Zhang MX (2011) Residual stress and thermomechanical properties of cold spray metal coatings. Acta Mater 59:1259–1270

    Article  Google Scholar 

  62. Rech S, Trentin A, Vezzu S, Legoux JG, Irissou E, Guagliano M (2011) Influence of preheated Al 6061 substrate temperature on the residual stresses of multipass Al coatings deposited by cold spray. J Therm Spray Tech 20(1–2):243–251

    Article  Google Scholar 

  63. Monzon MD, Marrero MD, Benitez AN, Hernandez PM, Cardenes JF (2006) A technical note on characterization of electroformed nickel shells for their application to injection molds. J Therm Spray Tech 176(1–3):273–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sova, A., Grigoriev, S., Okunkova, A. et al. Potential of cold gas dynamic spray as additive manufacturing technology. Int J Adv Manuf Technol 69, 2269–2278 (2013). https://doi.org/10.1007/s00170-013-5166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5166-8

Keywords

Navigation