Skip to main content
Log in

A Planning Comparison of Dynamic IMRT for Different Collimator Leaf Thicknesses with Helical Tomotherapy and RapidArc for Prostate and Head and Neck Tumors

Planvergleich zwischen dynamischer IMRT für unterschiedliche Leafbreiten, helikaler Tomotherapie und RapidArc am Beispiel von Prostatakarzinom und Kopf-Hals-Tumoren

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose:

A comparative analysis of the three most advanced intensity-modulated radiotherapy (IMRT) techniques currently commercially available was performed. Treatment plans made in rotational techniques (helical tomotherapy [HT] and RapidArc) were compared with sliding-window IMRT (dIMRT) on a conventional linear accelerator using different leaf thicknesses (2.5 mm, 5 mm, and 10 mm). The influence of the different planning techniques on the coverage of planning volume and sparing of organs at risk (OARs) was investigated.

Patients and Methods:

Nine patients with localized prostate and nine patients with head and neck cancer were chosen for this study. Treatment planning was performed in Eclipse (Varian) and in Tomotherapy planning software. Treatment plans were compared according to target volume coverage and sparing OARs, as well as by conformity and homogeneity index.

Results:

For both investigated tumor sites, the dosimetric effects of leaf widths between 2.5 mm, 5 mm and 10 mm were shown to be small in regard to target coverage. Tomotherapy plans had better target coverage (higher minimum dose). For prostate cancer, better sparing of bladder and rectum was achieved with RapidArc and dIMRT plans. For head and neck cancer, best sparing of parotid glands was achieved in HT plans. There was no significant difference (p > 0.05) in sparing of OARs between the dIMRT plans with different leaf widths neither for prostate cancer nor for head and neck cancer.

Conclusion:

For prostate and head and neck cases, all investigated IMRT techniques provide highly conformal treatment plans in terms of both target coverage and critical structure sparing.

Zusammenfassung

Ziel:

Es wurde eine Vergleichsanalyse der drei modernsten für die Photonentherapie kommerziell erhältlichen IMRT-Techniken (intensitätsmodulierte Radiotherapie) durchgeführt. Bestrahlungspläne, die mit Rotationstechnik erstellt wurden (helikale Tomotherapie [HT] und RapidArc) wurden mit dynamischer („sliding-window“) IMRT (dIMRT) für einen konventionellen Linearbeschleuniger mit unterschiedlichen Lamellenbreiten (2,5 mm, 5 mm und 10 mm) verglichen. Der Einfluss der unterschiedlichen Planungstechniken auf Parameter für die Zielvolumenabdeckung und die Schonung von Risikoorganen wurde untersucht.

Patienten und Methodik:

Es wurden jeweils neun Patienten mit Prostatakarzinom und mit Kopf-Hals-Tumor für die Untersuchung ausgewählt. Die Bestrahlungsplanung erfolgte mittels Eclipse (Fa. Varian) und der Tomotherapie-Planungssoftware. Bestrahlungspläne wurden hinsichtlich der Zielvolumenabdeckung und der Schonung von Risikoorganen sowie anhand des Konformitätsindex und des Homogenitätsindex verglichen.

Ergebnisse:

Für beide untersuchten Tumorentitäten war der dosimetrische Effekt unterschiedlicher Leafbreiten (2,5 mm, 5 mm und 10 mm) hinsichtlich der Zielvolumenabdeckung gering. Mittels Tomotherapie konnte die beste Zielvolumenabdeckung erreicht werden (höheres Dosisminimum). Bei Patienten mit Prostatakarzinom ließ sich mittels RapidArc und dIMRT eine bessere Schonung der Harnblase und des Rektums erzielen. Bei Patienten mit Kopf-Hals-Tumoren wurde in den HAT-Plänen eine bessere Schonung der Speicheldrüsen erreicht. Weder für Prostatakarzinome noch für Kopf-Hals-Tumoren zeigte sich ein signifikanter Unterschied bezüglich der Schonung der Risikoorgane zwischen den dIMRT-Plänen unter Verwendung unterschiedlicher Lamellenbreiten (p > 0,05).

Schlussfolgerung:

Mit allen untersuchten IMRT-Techniken war es für Patienten mit lokalisiertem Prostatakarzinom und für Patienten mit Kopf-Hals-Tumor möglich, hochkonformale Bestrahlungspläne mit guter Schonung der Risikoorgane zu erzeugen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burmeister J, McDermott PN, Bossenberger T, et al. Effect of MLC leaf width on the planning and delivery of SMLC IMRT using the CORVUS inverse treatment planning system. Med Phys 2004;31:3187–93.

    Article  PubMed  Google Scholar 

  2. Cao D, Holmes TW, Afghan MKN, et al. Comparison of plan quality provided by intensity-modulated arc therapy and helical tomotherapy. Int J Radiat Oncol Biol Phys 2007;69:240–50.

    PubMed  Google Scholar 

  3. Chen YJ, Liu A, Han C, et al. Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution. Med Dosim 2007;32:166–71.

    Article  PubMed  Google Scholar 

  4. Chow JC, Seguin M, Alexander A. Dosimetric effect of collimating jaws for small multileaf collimated fields. Med Phys 2005;32:759–65.

    Article  PubMed  Google Scholar 

  5. Clivio A, Fogliata A, Franzetti-Pellanda A, et al. Volumetric-modulated arc radiotherapy for carcinomas of the anal canal: a treatment planning comparison with fixed field IMRT. Radiother Oncol 2009;92:118–24.

    Article  PubMed  Google Scholar 

  6. Cozzi L, Clivio A, Bauman G, et al. Comparison of advanced irradiation techniques with photons for benign intracranial tumors. Radiother Oncol 2006;80:268–73.

    Article  CAS  PubMed  Google Scholar 

  7. Dvorak P, Georg D, Bogner J, et al. Impact of IMRT and leaf width on stereotactic body radiotherapy of liver and lung lessions. Int J Radiat Oncol Biol Phys 2005;61:1572–81.

    PubMed  Google Scholar 

  8. Feuvret L, Noël G, Mazeron JJ, et al. Conformity index: a review. Int J Radiat Oncol Biol Phys 2006;64:333–42.

    PubMed  Google Scholar 

  9. Fiorino C, Dell’Oca I, Pierelli A, et al. Simultaneous integrated boost (SIB) for nasopharynx cancer with helical tomotherapy. A planning study. Strahlenther Onkol 2007;183:497–505.

    Article  PubMed  Google Scholar 

  10. Fiveash JB, Murshed H, Huan J, et al. Effect of multileaf collimator leaf width on physical dose distributions in the treatment of CNS and head and neck neoplasms with intensity modulated radiation therapy. Med Phys 2002;29:1116–9.

    Article  CAS  PubMed  Google Scholar 

  11. Fogliata A, Clivio A, Nicolini G, et al. Intensity modulation with photons for benign intracranial tumors: a planning comparison of volumetric single arc, helical arc and fixed gantry techniques. Radiother Oncol 2009;89:254–62.

    Article  Google Scholar 

  12. Georg D, Kroupa B, Georg P, et al. Inverse planning — a comparative inter-system and inter-patient constraint study. Strahlenther Onkol 2006;182:473–80.

    Article  PubMed  Google Scholar 

  13. Hall EJ, Phil D. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006;65:1–7.

    PubMed  Google Scholar 

  14. Jin JY, Yin FF, Ryu S, et al. Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity-modulated radiosurgery. Med Phys 2005;32:405–11.

    Article  PubMed  Google Scholar 

  15. Kubo HD, Wilder RB, Pappas CTE. Impact of collimator leaf width on stereotactic radiosurgery and 3D conformal radiotherapy treatment plans. Int J Radiat Oncol Biol Phys 1999;44:937–45.

    CAS  PubMed  Google Scholar 

  16. Ling CC, Burman C, Chui CS, et al. Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation. Int J Radiat Oncol Biol Phys 1996;35:721–30.

    CAS  PubMed  Google Scholar 

  17. Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993;20:1709–19.

    Article  CAS  PubMed  Google Scholar 

  18. Nill S, Tucking T, Munter MW, Oelfke U. Intensity modulated radiation therapy with multileaf collimators of different leaf widths: a comparison of achievable dose distributions. Radiother Oncol 2005;75:106–11.

    Article  PubMed  Google Scholar 

  19. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008;35:310–7.

    Article  PubMed  Google Scholar 

  20. Palma D, Vollans E, James K, et al Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 2009;72:996–1001.

    Google Scholar 

  21. Pezner RD, Liu A, Chen YJ, et al. Dosimetric comparison of helical tomotherapy treatment and step-and-shoot IMRT of retroperitoneal sarcoma. Radiother Oncol 2006;81:81–7.

    Article  PubMed  Google Scholar 

  22. Rodrigues G, Yartsev S, Chen J, et al. A comparison of prostate IMRT and helical tomotherapy class solutions. Radiother Oncol 2006;80:374–7.

    Article  PubMed  Google Scholar 

  23. Sheng K, Molloy J, Read PW. Intensity-modulated radiation therapy (IMRT) dosimetry of the head and neck: a comparison of treatment plans using linear accelerator-based IMRT and helical tomotherapy. Int J Radiat Oncol Biol Phys 2006;65:917–23.

    PubMed  Google Scholar 

  24. Sterzing F, Schubert K, Sroka-Perez G, et al. Helical tomotherapy. Experiences of the first 150 patients in Heidelberg. Strahlenther Onkol 2008;184:8–14.

    Article  PubMed  Google Scholar 

  25. Sun X, Xia P, Yu N. Effects of the intensity levels and beam map resolutions on static IMRT plans. Med Phys 2004;31:2402–11.

    Article  PubMed  Google Scholar 

  26. Treutwein M, Hipp M, Kölbl O, Bogner L, IMRT of prostate cancer. A comparison of fluence optimization with sequential segmentation and direct step-and-shoot optimization. Strahlenther Onkol 2009;185:379–83.

    Article  PubMed  Google Scholar 

  27. Voordeckers M, Everaert H, Tournel K, et al. Longitudinal assessment of parotid function in patients receiving tomotherapy for head-and-neck cancer. Strahlenther Onkol 2008;184:400–5.

    Article  PubMed  Google Scholar 

  28. Vorwerk H, Wagner D, Seitz B, et al. Overestimation of low-dose radiation in intensity-modulated radiotherapy with sliding-window technique. Strahlenther Onkol 2009;185:821–9.

    Article  PubMed  Google Scholar 

  29. Wiezorek T, Georg D, Schwedas M, et al. Experimental determination of peripheral doses for different IMRT techniques and linear accelerators. Z Med Phys 2009;19:120–8.

    PubMed  Google Scholar 

  30. Wu Q, Mohan R, Morris M, et al. Simultaneous integrated boost intensity- modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: Dosimetric results. Int J Radiat Oncol Biol Phys 2003;56:573–85.

    Article  PubMed  Google Scholar 

  31. Xia P, Verhey LJ. Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. Med Phys 1998;25:1424–34.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang P, Happersett L, Hunt M, et al. Volumetric modulated arc therapy: planning and evaluation for prostate cancer cases. Int J Radiat Oncol Biol Phys 2010;76:1456–62.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, V., Bayer, W., Astner, S.T. et al. A Planning Comparison of Dynamic IMRT for Different Collimator Leaf Thicknesses with Helical Tomotherapy and RapidArc for Prostate and Head and Neck Tumors. Strahlenther Onkol 186, 502–510 (2010). https://doi.org/10.1007/s00066-010-2124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2124-3

Key Words

Schlüsselwörter

Navigation