Skip to main content
Log in

f(R) gravities, Killing spinor equations, “BPS” domain walls and cosmology

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive the condition on f(R) gravities that admit Killing spinor equations and construct explicit such examples. The Killing spinor equations can be used to reduce the fourth-order differential equations of motion to the first order for both the domain wall and FLRW cosmological solutions. We obtain exact “BPS” domain walls that describe the smooth Randall-Sundrum II, AdS wormholes and the RG flow from IR to UV. We also obtain exact smooth cosmological solutions that describe the evolution from an inflationary starting point with a larger cosmological constant to an ever-expanding universe with a smaller cosmological constant. In addition, We find exact smooth solutions of pre-big bang models, bouncing or crunching universes. An important feature is that the scalar curvature R of all these metrics is varying rather than a constant. Another intriguing feature is that there are two different f(R) gravities that give rise to the same “BPS” solution. We also study linearized f(R) gravities in (A)dS vacua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Eddington, The mathematical theory of relativity, Cambridge University Press, Cambridge U.K. (1923).

    MATH  Google Scholar 

  2. H. Weyl, A new extension of relativity theory. (in german), Annalen Phys. 59 (1919) 101 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. P.G. Bergmann, Comments on the scalar tensor theory, Int. J. Theor. Phys. 1 (1968) 25 [INSPIRE].

    Article  Google Scholar 

  4. T.V. Ruzmaikina and A.A. Ruzmaikin, Quadratic corrections to the Lagrangian density of the gravitational field and the singularity, Zh. Eksp. Teor. Fiz. 57 (1969) 680 [Sov. Phys. JETP 30 (1970) 372].

  5. B.N. Breizman, V.T. Gurovich and V.P. Sokolov, On the possibility of setting up regular cosmological solutions, Zh. Eksp. Teor. Fiz. 59 (1970) 288 [Sov. Phys. JETP 32 (1971) 155].

    Google Scholar 

  6. H.A. Buchdahl, Non-linear Lagrangians and cosmological theory, Mon. Not. R. Astron. Soc. 150 (1970) 1.

    ADS  Google Scholar 

  7. J. O’ Hanlon, Intermediate-range gravity - a generally covariant model, Phys. Rev. Lett. 29 (1972) 137 [INSPIRE].

    Article  ADS  Google Scholar 

  8. P. Teyssandier and P. Tourrenc, The Cauchy problem for the R + R 2 theories of gravity without torsion, J. Math. Phys. 24 (1983) 2793 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. C. Brans and R. Dicke, Machs principle and a relativistic theory of gravitation, Phys. Rev. 124 (1961) 925 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].

    ADS  Google Scholar 

  11. S. Nojiri and S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, eConf C 0602061 (2006) 06 [hep-th/0601213] [INSPIRE].

    Google Scholar 

  12. T.P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928] [INSPIRE].

    Google Scholar 

  14. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 ] [hep-th/9711200] [INSPIRE].

  15. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  17. A. de la Cruz-Dombriz, A. Dobado and A. Maroto, Black holes in f(R) theories, Phys. Rev. D 80 (2009) 124011 [Erratum ibid. D 83 (2011) 029903] [arXiv:0907.3872] [INSPIRE].

  18. A. Larranaga, A rotating charged black hole solution in f(R) gravity, arXiv:1108.6325 [INSPIRE].

  19. J. Cembranos, A. de la Cruz-Dombriz and P. Romero, Kerr-Newman black holes in f(R) theories, arXiv:1109.4519 [INSPIRE].

  20. D. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].

    ADS  Google Scholar 

  21. H. Lü, C. Pope and Z.-L. Wang, Pseudo-supersymmetry, consistent sphere reduction and Killing spinors for the bosonic string, Phys. Lett. B 702 (2011) 442 [arXiv:1105.6114] [INSPIRE].

    ADS  Google Scholar 

  22. H. Lü and Z.-L. Wang, Killing spinors for the bosonic string, arXiv:1106.1664 [INSPIRE].

  23. H. Liu, H. Lü and Z.-L. Wang, Killing spinors for the bosonic string and the Kaluza-Klein theory with scalar potentials, arXiv:1106.4566 [INSPIRE].

  24. R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz black hole in four dimensional R 2 gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Analytic Lifshitz black holes in higher dimensions, JHEP 04 (2010) 030 [arXiv:1001.2361] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Nojiri and S.D. Odintsov, Unified cosmic history in modified gravity: from f(R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59 [arXiv:1011.0544] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Y. Zhong, Y.-X. Liu and K. Yang, Tensor perturbations of f(R)-branes, Phys. Lett. B 699 (2011) 398 [arXiv:1010.3478] [INSPIRE].

    ADS  Google Scholar 

  29. Y.-X. Liu, Y. Zhong, Z.-H. Zhao and H.-T. Li, Domain wall brane in squared curvature gravity, JHEP 06 (2011) 135 [arXiv:1104.3188] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Gremm, Four-dimensional gravity on a thick domain wall, Phys. Lett. B 478 (2000) 434 [hep-th/9912060] [INSPIRE].

    ADS  Google Scholar 

  31. G. Dotti, J. Oliva and R. Troncoso, Static wormhole solution for higher-dimensional gravity in vacuum, Phys. Rev. D 75 (2007) 024002 [hep-th/0607062] [INSPIRE].

    ADS  Google Scholar 

  32. G. Dotti, J. Oliva and R. Troncoso, Exact solutions for the Einstein-Gauss-Bonnet theory in five dimensions: black holes, wormholes and spacetime horns, Phys. Rev. D 76 (2007) 064038 [arXiv:0706.1830] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. M. Ali, F. Ruiz, C. Saint-Victor and J.F. Vazquez-Poritz, Strings on AdS wormholes, Phys. Rev. D 80 (2009) 046002 [arXiv:0905.4766] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. G. Galloway, K. Schleich, D. Witt and E. Woolgar, The AdS/CFT correspondence conjecture and topological censorship, Phys. Lett. B 505 (2001) 255 [hep-th/9912119] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. H. Lü and J. Mei, Ricci-flat and charged wormholes in five dimensions, Phys. Lett. B 666 (2008) 511 [arXiv:0806.3111] [INSPIRE].

    ADS  Google Scholar 

  36. A. Bergman, H. Lü, J. Mei and C. Pope, AdS wormholes, Nucl. Phys. B 810 (2009) 300 [arXiv:0808.2481] [INSPIRE].

    Article  ADS  Google Scholar 

  37. H. Lü, J. Mei and Z.-L. Wang, GL(n,R) wormholes and waves in diverse dimensions, Class. Quant. Grav. 26 (2009) 085020 [arXiv:0901.0003] [INSPIRE].

    Article  ADS  Google Scholar 

  38. Z.-L. Wang and H. Lü, Most general spherically symmetric M2-branes and type IIB strings, Phys. Rev. D 80 (2009) 066008 [arXiv:0906.3439] [INSPIRE].

    ADS  Google Scholar 

  39. D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  40. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. J. Grover, J.B. Gutowski, C.A. Herdeiro and W. Sabra, HKT geometry and de Sitter supergravity, Nucl. Phys. B 809 (2009) 406 [arXiv:0806.2626] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. J. Grover, J.B. Gutowski, C.A. Herdeiro, P. Meessen, A. Palomo-Lozano, et al., Gauduchon-Tod structures, Sim holonomy and de Sitter supergravity, JHEP 07 (2009) 069 [arXiv:0905.3047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. Y.S. Myung, Graviton and scalar propagations on AdS 4 space in f(R) gravities, Eur. Phys. J. C 71 (2011) 1550 [arXiv:1012.2153] [INSPIRE].

    ADS  Google Scholar 

  44. W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. H. Lü and C. Pope, Critical gravity in four dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Deser, H. Liu, H. Lü, C. Pope, T.C. Sisman, et al., Critical points of d-dimensional extended gravities, Phys. Rev. D 83 (2011) 061502 [arXiv:1101.4009] [INSPIRE].

    ADS  Google Scholar 

  47. H. Lü, C. Pope and Z.-L. Wang, Pseudo-supergravity extension of the bosonic string, Nucl. Phys. B 854 (2012) 293 [arXiv:1106.5794] [INSPIRE].

    Article  ADS  Google Scholar 

  48. H.-S. Liu, H. Lü, Z.-L. Wang, H. Lü and Z.-L. Wang, Gauged Kaluza-Klein AdS pseudo-supergravity, Phys. Lett. B 703 (2011) 524 [arXiv:1107.2659] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishan Liu.

Additional information

ArXiv ePrint: 1111.6602

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Lü, H. & Wang, ZL. f(R) gravities, Killing spinor equations, “BPS” domain walls and cosmology. J. High Energ. Phys. 2012, 83 (2012). https://doi.org/10.1007/JHEP02(2012)083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)083

Keywords

Navigation