Skip to main content
Log in

Biochemical and molecular control of cold-induced sweetening in potatoes

  • Invited Review
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The benefits of being able to process potatoes directly into chips or fries from cold storage (2 to 4 C) include less shrinkage, retention of dry matter, decreased disease loss, extended marketability, and the elimination of the need for dormancy-prolonging chemicals. Unfortunately at low temperature, potato tubers undergo a phenomenon known as cold-induced sweetening where the rate of conversion of starch to reducing sugars (i.e., glucose and fructose) is accelerated. As raw potatoes are sliced and cooked in oil at high temperature, the accumulated reducing sugars react with free amino acids in the potato cell forming unacceptably brown- to black-pigmented chips or fries via a non-enzymatic, Maillard-type reaction. Potatoes yielding these unacceptably colored products are generally rejected for purchase by the processing plant. All commercial potato cultivars presently used for the production of potato chips and fries accumulate excess free reducing sugars when exposed to cold stress. If a “cold-processing potato” was available, energy savings would be realized in potato-growing regions where outside storage temperatures are cool. In regions where outside temperatures are moderately high, increased refrigeration costs may occur. This expense would be offset, however, by removal of the need to purchase dormancy-prolonging chemicals, by a decreased need for disease control and by improvement of long-term tuber quality. The primary goal of this review is to describe recent research of a biochemical and molecular nature that relates to the underlaying mechanisms regulating post harvest, cold-induced sweetening in potato tubers. No attempt was made to outline the extensive research conducted on the genetic manipulation of carbon metabolism between starch and free sugars during photosynthesis and/or during potato development in relation to source/sink interactions.

Resumen

Los beneficios que se obtienen al procesar papas fritas o en houjuelas de manera directa, que hayan estado almacenadas en cámaras frigoríficas a temperaturas que van de 2 a 4°C, incluyen menor encogimiento, retención de sustancia seca, disminución de enfermedades, un amplio potencial para el mercado y la eliminación de la necesidad de prolongar el estado de dormancia mediante químicos. Desgraciadamente, a bajas temperatoras, los tubérculos de la papa sufren un fenómeno conocido como indución al endulzamiento en frío, según el cual se acelera el rango de conversión al almidón para reducir azúcares (ej., glucosa y fructosa). Cuando se rebanan las papas crudas y se cocinan en aceite a altas temperaturas, los azúcares reductores acumulados reaccionan liberando aminoácidos en la célula de la papa, formando inaceptables pigmentaciones marrones a negras en las papas en hojuelas o fritas, debido a una reacción no enzimática del tipo Maillard. Las plantas procesadoras, generalmente no aceptan comprar papas con estos colores. Todos los cultivares comerciales de papa usados para la producción de hojuelas y papas fritas acumulan excedentes de azúcares reductores libres al ser expuestos al estrés del frío. Si una “papa procesada en frío” está disponible, la energía ahorrada puede ser aprovechada en aquellas regiones de crecimiento de papa donde las temperaturas de almacenamiento exterior son bajas. En las regiones donde las temperaturas son ligeramente altas, pueden incrementarse los costos de refrigeración. Sin embargo, este gasto se compensaría al eliminarse la necesidad de comprar químicos que producen dormancia, y los que sirven para controlar enfermedades y mejorar la calidad del tubérculo en el largo plazo. La meta primaria de esta revisión es describir la investigación reciente de naturaleza bioquímica y molecular relacionada con los mecanismos que regulan la poscosecha y el endulzamiento inducido en frío en los tubérculos de papa. No se ha hecho ningún esfuerzo para explicar la investigatión realizada sobre la manipulación genética del metabolismo del carbono entre el almidón y los azúcares libres durante la fotosíntesis y/o durante desarrollo de la papa respecto a las interacciones de la fuente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aclnv:

acid invertase

AGPase:

adenosine diphosphate glucose pyrophosphorylase

ATP-PFK:

adenosine triphosphate dependent fructose-6-phosphate 1-phosphotransferase

FBPase:

fructose-l,6-bisphosphatase

Fru-1,6-P2 :

fructose-l,6-bisphosphate

Fru-2,6-P2 :

fractose-2,6-bisphos-phate

Fru-6-P:

fructose-6-phosphate

GFP:

glucose forming potential

Glc-l-P:

glucose-1-phosphate

Glc-6-P:

glucose-6-phosphate

PEP:

phos-phoenolpyruvate

PK:

pyruvate kinase

PPi:

inorganic pyrophosphate

PPi-PFK:

pyrophosphate dependent fructose-6-phosphate 1-phosphotransferase

QTL:

quantitative trait locus

RT-PCR:

reverse transcriptase polymerase chain reaction

UDP-Glc:

uridine diphosphate glucose

UGPase:

uridine diphosphate glucose pyrophosphorylase

SPS:

sucrose phosphate synthase

Literature cited

  • Amir, J., V. Kahn, and M. Unterman. 1977. Respiration, ATP level, and sugar accumulation in potato tubers during storage at 4 C. Phytochemistry 16:1495–1498.

    Article  CAS  Google Scholar 

  • ap Rees, T. 1974. Pathways of carbohydrate breakdown in plants, MTP International Review of Science. Plant Biochemistry 11:89–127.

    Google Scholar 

  • ap Rees, T., W.L. Dixon, C.J. Pollock, and F. Franks. 1981. Low temperature sweetening of higher plants.In: Rhodes, M.J.C. (ed.), Recent advances in the biochemistry of fruits and vegetables. Academic Press, New York, pp.41–61.

    Google Scholar 

  • ap Rees, T., M.M. Burrell, T.G. Entwistle, J.B.W. Hammond, D. Kirk, and N.J. Kruger. 1988. Effects of low temperature on the respiratory metabolism of carbohydrate by plants.In: Woodward, I.F., and S.P. Long (eds.), Plants and Temperature. Company of Biologists, Cambridge, UK. pp.377–393.

    Google Scholar 

  • ap Rees, T. and S. Morrell. 1990. Carbohydrate metabolism in developing potatoes. Am Potato J 67:835–847.

    Google Scholar 

  • Barichello, V., R.Y. Yada, R.H. Coffin, and D.W. Stanley. 1990a Low temperature sweetening in susceptible and resistant potatoes: Starch structure and composition. J Food Sci 55:1054–1059.

    Article  CAS  Google Scholar 

  • Barichello, V., R.Y. Yada, R.H. Coffin, and D.W. Stanley. 1990b. Respiratory enzyme activity in low temperature sweetening of susceptible and resistant potatoes. J Food Sci 55:1060–1063.

    Article  CAS  Google Scholar 

  • Borovkov, A.Y., P.E. McClean, J.R. Sowokinos, S.H. Ruud, and G.A. Secor. 1996 Effect of expression of UDP-Glucose pyrophosphorylase antisense and ribozyme RNAs on the enzyme activity and carbohydrate composition of transgenic potato plants. J Plant Physiol 147:644–652.

    CAS  Google Scholar 

  • Bredemeijer, G.M.M., H.C.J. Burg, P.A.M. Claassen, and W.J. Stiekema 1991. Phosphofructokinase in relation to sugar accumulation in cold-stored potato tubers. J. Plant Physiol 138:129–135.

    CAS  Google Scholar 

  • Bryce, J.H., and S.A. Hill. 1993. Energy production in plant cells.In: Lee, P.J., and R.C. Leegood (eds.), Plant Biochemistry and Molecular Biology. Wiley, Chichester. pp. 1–21.

    Google Scholar 

  • Burrell, M.M. 1994. Control of carbohydrate metabolism in potato tubers.In: Belknap, W.R., M.E. Vayda, and W.P. Park (eds.), The Molecular and Cellular Biology of the Potato, 2nd edition, C.A.B. International, Wallingford, UK. pp.45–55.

    Google Scholar 

  • Burrell, M.M., P.J. Mooney, M. Blundy, D. Carter, F. Wilson, J. Green, K.S. Blundy, and T. ap Rees. 1994. Genetic manipulation of 6- phosphofructokinase in potato tubers. Planta 194:95–101.

    Article  CAS  Google Scholar 

  • Burton, W.G. 1969. The sugar balance in some British potato varieties during storage, II. The effects of tuber age, previous storage temperature, and intermittent refrigeration upon low-temperature sweetening. Eur Potato J 12:81–95.

    Article  CAS  Google Scholar 

  • Claassen, P.A.M., and M.A.W. Budde. 1996. Possible involvement of fructose 1,6-bisphosphatase in cold-induced sweetening in potatoes. Potato Res 39:141–151.

    Article  CAS  Google Scholar 

  • Claassen, P.A.M., M.A.W. Budde, and M.H. van Calker. 1993. Increase in phosphorylase activity during cold-induced sugar accumulation in potato tubers. Potato Res36:205–217.

    Article  CAS  Google Scholar 

  • Claassen, P.A.M., M.A.W. Budde, H.J. de Ruyter, M.H. van Calker, and A. van Es. 1991. Potential role of pyrophosphate:fructose 6-phos-phate phosphotransferase in carbohydrate metabolism of cold stored tubers ofSolanum tuberosum cv. Bintje. Plant Physiol 95:1243–1249.

    CAS  Google Scholar 

  • Cochrane, M.P., C.M. Duffus, M.J. Allison, G.R. Mackay. 1991. Amylolytic activity in stored potato tubers. 2. The effect of low-temperature storage on the activities of a- and ß-amylase and α-glucosidase in potato tubers. Potato Res 34:333–341.

    Article  CAS  Google Scholar 

  • Coffin, R.H., R.Y. Yada, K.L. Parkin, B. Grodzinski, and D.W. Stanley. 1987. Effect of low temperature storage on sugar concentrations and chip color of certain processing potato cultivars and selections. J Food Sci 52:639–645.

    Article  Google Scholar 

  • Coleman, W.K., G.C.C. Tai, S. Clayton, M. Howie, and A. Pereira 1993. A portable monitor for the rapid assessment of processing quality of stored potato tubers. Am Potato J 70:909–923.

    Article  Google Scholar 

  • Copeland, L., and J.F. Turner. 1987. The regulation of glycolysis and the pentose phosphate pathway.In: Davies D.D. (ed.), The Biochemistry of Plants. Academic Press, New York. pp. 107–128.

    Google Scholar 

  • Cottrell, J.E., C.M. Duffus, L. Paterson, G.R. Mackay, M.J. Allison, and H. Bain. 1993. The effect of storage temperature on reducing sugar concentration and the activities of three amylolytic enzymes in tubers of the cultivated potato,Solarium tuberosum L. Potato Res 36:107–117.

    Article  CAS  Google Scholar 

  • Davies, H.V. 1990. Carbohydrate metabolism during sprouting. Am Potato J 67:815–827.

    CAS  Google Scholar 

  • Davies, H.V., R.A. Jefferies, and L. Scobie. 1989. Hexose accumulation in cold stored tubers of potatoSolanum tuberosum L). The effects of water stress. J. Plant Physiol 134:471–475.

    CAS  Google Scholar 

  • Deiting, U., R. Zrenner, and M. Stitt. 1998. Similar temperature requirement for sugar accumulation and for the induction of new forms of sucrose phosphate synthase and amylase in cold-stored potato tubers. Plant, Cell Env 21:127–138.

    Article  CAS  Google Scholar 

  • Dixon, W.L., and T. ap Rees. 1980a. Identification of the regulatory steps in glycolysis in potato tubers. Phytochemistry 19:1297–1301.

    CAS  Google Scholar 

  • Dixon, W.L., and T. ap Rees. 1980b. Carbohydrate metabolism during cold-induced sweetening of potato tubers. Phytochemistry 19:1653–1656.

    Article  CAS  Google Scholar 

  • Dixon, W.L., F. Franks, and T. ap Rees. 1981. Cold lability of phosphofructokinase from potato tubers. Phytochemistry 20:969–972.

    Article  CAS  Google Scholar 

  • Doehlert, D.C., and S.C. Huber. 1983. Regulation of spinach leaf sucrose phosphate synthase by glucose-6-phosphate, inorganic phosphate and pH. Plant Physiol 73:989–994.

    PubMed  CAS  Google Scholar 

  • Doucette, M.S., and M.K. Pritchard. 1993. ABA involvement in low temperature sweetening of potatoes. Acta Horticulturae 343:293–294.

    Google Scholar 

  • Dunford, R. 1992. Pyruvate kinase and glycolytic control in potatoes. Ph.D thesis. Cambridge University, Cambridge, UK.

    Google Scholar 

  • Ewing, E.E., A.H. Senesac, and J.B. Sieczka. 1981. Effects of short periods of chilling and warming on potato sugar content and chipping quality. Am Potato J 58:633–647.

    Article  Google Scholar 

  • Geigenberger, P., L. Merlo, R. Reimholz, and M. Stitt. 1994. When growing potato tubers are detached from their mother plant there is a rapid inhibition of starch synthesis, involving inhibition of ADP- glucose pyrophosphorylase. Planta 193:486–493.

    Article  CAS  Google Scholar 

  • Geigenberger, P., R. Reimholz, M. Geiger, L. Merlo, V. Canale, and M. Stitt. 1997. Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit. Planta 201:502–518.

    Article  CAS  Google Scholar 

  • Gottlob-McHugh, S.G., R.S. Sangwan, S.D. Blakeley, G.C. Vanlerberghe, K. Ko, D.H. Turpin, W.C. Plaxton, B.L. Miki, and D.T. Dennis. 1992. Normal growth of transgenic tobacco plants in the absence of cytosolic pyruvate kinase. Plant Physiol 100:820–825.

    PubMed  CAS  Google Scholar 

  • Gounaris, Y., and J.R. Sowokinos. 1992, Two-dimensional analysis of mitochondrial proteins from potato cultivars resistant and sensitive to cold-induced sweetening. J Plant Physiol 140:611–616.

    CAS  Google Scholar 

  • Greiner, S., T. Rausch, U. Sonnewald, and K. Herbers. 1999. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat Biotechnol 17:708–711.

    Article  PubMed  CAS  Google Scholar 

  • Haake, V., R. Zrenner, U. Sonnewald, and M. Stitt. 1998. A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the level of sugars and starch, and inhibits growth of potato plants. Plant J 14:147–157.

    Article  PubMed  CAS  Google Scholar 

  • Hajirezaei, M., U. Sonnewald, R. Viola, S. Carlisle, D. Dennis, and M. Stitt. 1994. Transgenic potato plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta 192:16–30.

    CAS  Google Scholar 

  • Hammond, J.B.W., M.M. Burrell, and N.J. Kruger. 1990. Effect of low temperature on the activity of phosphofructokinase from potato tubers. Planta 180:613–616.

    Article  CAS  Google Scholar 

  • Hatch, M.D. and K.T. Glasziou. 1963. Sugar accumulation cycle in sugar cane. II Relationship of invertase activity to sugar content and growth rate in storage tissue of plants grown in controlled environments. Plant Physiol 38:344–348.

    PubMed  CAS  Google Scholar 

  • Hatzfeld, W-D., J. Dancer, and M. Stitt. 1989. Direct evidence that pyrophosphate:fructose-6-phosphate phosphotransferase can act as a glycolytic enzyme in plants. FEBS Letters 254:215–218.

    Article  CAS  Google Scholar 

  • Hill, L., R. Reimholz, R. Schröder, T.H. Nielsen, and M. Stitt. 1996. The onset of sucrose accumulation in cold-stored potato tubers is caused by an increased rate of sucrose synthesis and coincides with low levels of hexose-phosphates, an activation of sucrose phosphate synthase and the appearance of a new form of amylase. Plant, Cell Env 19:1223–1237.

    Article  CAS  Google Scholar 

  • Hiser, C., and L. Mclntosh. 1990. Alternative oxidase of potato is an integral membrane protein synthesizedde novo during aging of tuber slices. Plant Physiol 93:312–318.

    PubMed  CAS  Google Scholar 

  • Huber, S.C., and J.L.A. Huber. 1992. Role of sucrose phosphate synthase in sucrose metabolism in leaves. Plant Physiol 99:1275–1278.

    PubMed  CAS  Google Scholar 

  • Huber, S.C., and J.L.A. Huber. 1996. Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Mol Biol 47:431–444.

    Article  CAS  Google Scholar 

  • Huber, J.L.A., S.C. Huber, and T.H. Nielsen. 1989. Protein phosphorylation as a mechanism for regulation of spinach leaf sucrose-phosphate synthase activity. Arch Biochem Biophys 270:681–690.

    Article  PubMed  CAS  Google Scholar 

  • Isherwood, A. 1973. Starch-sugar interconversion inSolanum tuberosum. Phytochemistry 12:2579- 2591.

    Article  CAS  Google Scholar 

  • Isherwood, A. 1976. Mechanism of starch-sugar interconversion inSolanum tuberosum. Phytochemistry 15:33–41.

    Article  CAS  Google Scholar 

  • Isherwood, F.A., and M.G.H. Kennedy. 1975. The composition of the expressed sap from cold stored potatoes. Phytochemistry 14:83–84.

    Article  CAS  Google Scholar 

  • Isla, M.I., D.P. Leal, M.A Vattuone, and A.R. Sampietro. 1992. Cellular localization of the invertase, proteinaceous inhibitor and lectin from potato tubers. Phytochemistry 31:1115–1118.

    Article  CAS  Google Scholar 

  • Kacser, H. 1987. Control of metabolism.In: Davies D.D. (ed.), The Biochemistry of Plants. Vol 11, Academic Press, London, pp. 39–67.

    Google Scholar 

  • Katsube, T., Y. Kazuta, H. Mori, K. Nakano, K. Tanizawa, and T. Fukui. 1990. UDP-glucose pyrophosphorylase from potato tuber: cDNA cloning and sequencing. J Biochem 108:321–326.

    PubMed  CAS  Google Scholar 

  • Kennedy, M.G.H., and F.A. Isherwood. 1975. Activity of phosphorylase inSolanum tuberosum during low temperature storage. Phytochemistry 14:667–670.

    Article  CAS  Google Scholar 

  • Knowles, N.R., and L.O. Knowles. 1989. Correlations between electrolyte leakage and degree of saturation of polar lipids from aged potatoSolanum tuberosum L.) tuber tissue. Ann Bot 63:331–338.

    Google Scholar 

  • Krause, K-P., L. Hill, R. Reimholz, T.H. Nielsen, U. Sonnewald, and M. Stitt. 1998. Sucrose metabolism in cold-stored tubers with decreased expression of sucrose phosphate synthase. Plant, Cell Env 21:285–299.

    Article  CAS  Google Scholar 

  • Kruckeberg, A.L., H.E. Neuhaus, R. Feil, L.D. Gottlieb, and M. Stitt. 1989. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast ofClarkia xantiana: Impact on massaction ratios and fluxes to sucrose and starch, and estimation of flux control coefficients and elasticity coefficients. Biochem J 261:457–467.

    PubMed  CAS  Google Scholar 

  • Kruger, N.J., J.B.W. Hammond, and M.M. Burrell. 1988. Molecular characterization of four forms of phosphofructokinase purified from potato tuber. Arch Biochem Biophys 267:690–700.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, G.N.M., L.O. Knowles, N. Fuller, and N.R. Knowles. 2000. alpha-1,4 glucan phosphorylase activity correlates with senescent sweetening but not low temperature-induced sweetening in potato. Plant Physiol 123(S):126 (abstract no. 596).

    Google Scholar 

  • Lorberth, R., G. Ritte, L. Willmitzer, and J. Kossmann. 1998. Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nat Biotechnol 16:473–477.

    Article  PubMed  CAS  Google Scholar 

  • Mares, D.J., J.R. Sowokinos, and J.S. Hawker. 1985. Carbohydrate metabolism in developing potato tubers.In: Li, P.H.(ed.), Potato Physiology. Academic Press, New York, pp.279–327.

    Google Scholar 

  • Merlo, L., P. Geigenberger, M. Hajirezaei, and M. Stitt. (1993) Changes of carbohydrates, metabolites and enzyme activities in potato tubers during development, and within a single tuber along a stolon-apex gradient. J Plant Physiol 142:392–402.

    CAS  Google Scholar 

  • Morrell, S., and T. ap Rees. 1986a. Control of the hexose content of potato tubers. Phytochemistry 25:1073–1076.

    Article  CAS  Google Scholar 

  • Morrell, S., and T. ap Rees. 1986b. Sugar metabolism in developing tubersof Solanum tuberosum. Phytochemistry 25:1579–1585.

    Article  CAS  Google Scholar 

  • Müller-Róber, B., U. Sonnewald, and L. Willmitzer. 1992. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J 11:1229–1238.

    PubMed  Google Scholar 

  • Müller-Thurgau, H. 1882. Uber Zuckeranhaufung in Pflanzentheilen in Folge niederer Temperatur. Landwirtsch Jahrb 11:751–828.

    Google Scholar 

  • Nakae, T. 1971. Multiple forms of uridine diphosphate glucose pyrophosphorylase fromSalmonella typhimurium. J Biol Chem 246:4404–4411.

    PubMed  CAS  Google Scholar 

  • Nantes, I.L., M.M. Fagian, R. Catisti, P. Arruda, I.G. Maia, and A.E. Vercesi. 1999. Low temperature and aging-promoted expression of PUMP in potato tuber mitochondria. FEBS Letters 457:103–106.

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus, H.E., A.L. Kruckeberg, R. Feil, and M. Stitt. 1989. Reduced activity of phosphoglucose isomerase in the cytosol and chloroplast ofClarkia xantiana II. Study of the mechanisms which regulate photosynthate partitioning. Planta 178:110–112.

    Article  CAS  Google Scholar 

  • Nielsen, T.H., U. Deiting, and M. Stitt. 1997. A ß-amylase in potato tubers is induced by storage at low temperature. Plant Physiol 113:503–510.

    Article  PubMed  CAS  Google Scholar 

  • O’Donoghue, E.P., R.Y. Yada, and A.G. Marangoni. 1994. Low temperature sweetening in potato tubers: the role of the amyloplast membrane. J. Plant Physiol 145:335–341.

    Google Scholar 

  • Pollock, C., and T. ap Rees T. 1975a. Activities of enzymes of sugar metabolism in cold-stored tubers ofSolanum tuberosum. Phytochemistry 14:613–617.

    Article  CAS  Google Scholar 

  • Pollock, C., and T. ap Rees. 1975b. Effect of cold on glucose metabolism by callus and tubers ofSolanum tuberosum. Phytochemistry 14:1903–1906.

    Article  CAS  Google Scholar 

  • Preiss, J. 1982. Regulation of the biosynthesis and degradation of starch. Annu Rev Plant Physiol 33:431–454.

    Article  CAS  Google Scholar 

  • Preiss, J. 1988. Biosynthesis of starch and its regulation.In: Preiss, J. (ed.), The Biochemistry of Plants, Carbohydrates. Vol 14, Academic Press, San Diego, pp. 181–254.

    Google Scholar 

  • Pressey, R. 1967. Invertase inhibitor from potatoes: Purification, characterization and reactivity with plant invertases. Plant Physiol 42:1780–1786.

    PubMed  CAS  Google Scholar 

  • Pressey, R. 1969. Role of invertase in accumulation of sugars in cold- stored potatoes. Am Potato J 46:291–297.

    Article  CAS  Google Scholar 

  • Pritchard M.K., and L.R. Adam. 1994. Relationships between fry color and sugar concentration in stored Russet Burbank and Shepody Potatoes. Am Potato J 71:59–68.

    Article  Google Scholar 

  • Reimholz, R., P. Geigenberger, and M. Stitt. 1994. Sucrose-phosphate synthase is regulated via metabolites and protein phosphorylation in potato tubers, in a manner analogous to the enzyme in leaves. Planta 192:480–488.

    Article  CAS  Google Scholar 

  • Reimholz, R., M. Geiger, V. Haake, U. Deiting, K-P. Krause, U. Sonnewald, and M. Stitt. 1997 Potato plants contain multiple forms of sucrose phosphate synthase, which differ in their tissue distributions, their levels during development, and their responses to low temperature. Plant, Cell Env 20:291–305.

    Article  CAS  Google Scholar 

  • Richardson, D.L., H.V. Davies, H.A. Ross, and G.R. Mackay. 1990. Invertase activity and its relation to hexose accumulation in potato tubers. J Exp Bot 41:95–99.

    Article  CAS  Google Scholar 

  • Samotus, B., M. Niedzwiedz, Z. Kolodziej, M. Leja, and B. Czajkowska. 1974. Storage and reconditioning of tubers of Polish potato varieties and strains I. Influence of storage temperature on sugar level in potato tubers of different varieties and strains. Potato Res 17:64–81.

    Article  CAS  Google Scholar 

  • Sasaki, T., K. Tadokoro, and S. Suziki. 1971. Multiple forms of invertase of potato tuber stored at low temperature. Phytochemistry 10:2047–2050.

    Article  CAS  Google Scholar 

  • Schott, K., S. Borchert, B. Müller-Röber, and H.W. Heldt. 1995. Transport of inorganic phosphate and C3- and C6-sugar phosphates across the envelope membranes of potato tuber amyloplasts. Planta 196:647–652.

    Article  CAS  Google Scholar 

  • Scott, P., A.J. Lange, S.J. Pilkis, and N.J. Kruger. 1995. Carbon metabolism in leaves of transgenic tobacco(Nicotiana tabacum L.) containing elevated fructose-2,6-bisphosphate levels. Plant J 7:461–469.

    Article  PubMed  CAS  Google Scholar 

  • Shekar, V.C., W.M. Iritani, and J.R. Magnuson. 1979. Starch-sugar inter-conversion inSolanum tuberosum L. II. Influence of membrane permeability and fluidity. Am Potato J 56:225–235.

    Article  Google Scholar 

  • Sherman, M., and E.E. Ewing. 1983. Effects of temperature and low oxygen atmospheres on respiration, chip color, sugars, and malate of stored potatoes. J Amer Soc Hort Sci 108:129–133.

    CAS  Google Scholar 

  • Smith, A.M., K. Denyer, and C. Martin. 1997. The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 48:67–87.

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald, U., A. Basner, G. Burkhard, and M. Steup. 1995. A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition and expression analysis. Plant Mol Bio 27:567–576.

    Article  CAS  Google Scholar 

  • Sowokinos, J.R. 1990a. Effect of stress and senescence on carbon partitioning in stored potatoes. Am Potato J 67:849–857.

    CAS  Google Scholar 

  • Sowokinos, J.R. 1990b. Stress-induced alterations in carbohydrate metabolism.In: Vayda, M.E., and W.P. Park (eds.), The Molecular and Cellular Biology of the Potato. C.A.B. International, Wallingford, UK pp. 137–158.

    Google Scholar 

  • Sowokinos, J.R. 1999. Choices for potatoes that chip directly from 42 F without reconditioning. Valley Potato Grower 64(114): 14–17.

    Google Scholar 

  • Sowokinos, J.R. 2001. Pyrophosphorylase inSolanum tuberosum L.: Allelic and isozyme patterns of UDP-Glucose pyrophosphorylase as a marker for cold-sweetening resistance in potatoes. Am J Potato Res 78:57–64.

    CAS  Google Scholar 

  • Sowokinos, J.R., E.C. Lulai, and J.A. Knoper. 1985. Translucent tissue defects inSolanum tuberosum L. I: Alterations in amyloplast membrane integrity, enzyme activities, sugars and starch content. Plant Physiol 78:489–494.

    Article  PubMed  CAS  Google Scholar 

  • Sowokinos, J.R., B. Morgan, M. Sleeper, and I. Shea 1989. Establishment of glucose-forming-potential (GFP) as a tool to screen breeding clones for processing potential. RRV Potato Res and Reporting Conference pp. 145-155.

  • Sowokinos, J.R., and J. Preiss. 1982. Pyrophosphorylases inSolanum tuberosum L. HI. Purification, physical and catalytic properties of ADP-Glucose pyrophosphorylase in potatoes. Plant Physiol 69:1459–1466.

    PubMed  CAS  Google Scholar 

  • Sowokinos, J.R., C.C. Shock, T.D. Stieber, and E.P. Eldredge. 2000. Compositional and enzymatic changes associated with the sugar-end defect in Russet Burbank potatoes subjected to a single, transient, moisture stress period during early tuber bulking. Am J Potato Res 77:47–56.

    CAS  Google Scholar 

  • Sowokinos, J.R., C.T. Thomas, and M.M. Burrell. 1997. Pyrophosphorylases in potato V. Allelic polymorphism of UDP-Glucose pyrophosphorylase in potato cultivars and its association with tuber resistance to sweetening in the cold. Plant Physiol 113:511–517.

    Article  PubMed  CAS  Google Scholar 

  • Sowokinos, J.R., J.P. Spychalla, and S.L. Desborough. 1993. Pyrophosphorylases inSolanum tuberosum L. IV. Purification, tissue localization, and physicochemical properties of UDP- Glucose pyrophosphorylase. Plant Physiol 101:1073–1080.

    PubMed  CAS  Google Scholar 

  • Spychalla, J.P., and S.L. Desborough. 1990. Fatty acids, membrane permeability, and sugars of stored potato tubers. Plant Physiol 94:1207–1213.

    PubMed  CAS  Google Scholar 

  • Spychalla, J.P., B.E. Scheffler, J.R. Sowokinos, and M.W. Bevan. 1994. Cloning, antisense RNA inhibition, and the coordinated expression of UDP-glucose pyrophosphorylase with starch biosynthesis genes in potato tubers. J Plant Physiol 144:444–453.

    CAS  Google Scholar 

  • Stark, D.M., K.P. Timmerman, G.F. Barry, J. Preiss, and G.M. Kishore. 1992. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258:287–292.

    Article  PubMed  CAS  Google Scholar 

  • Steup, M. 1990. Starch degrading enzymes,In: Lea, P.J. (ed.), Methods in Plant Biochemistry. Vol 3. Academic Press, London, pp. 103–128.

    Google Scholar 

  • Stitt, M. 1987. Fructose 2,6-bisphosphate and plant carbohydrate metabolism. Plant Physiol 84:201–204.

    PubMed  CAS  Google Scholar 

  • Stitt, M. 1990. Fructose 2,6-bisphosphate as regulatory metabolite in plants. Annu Rev Plant Physiol. Mol Biol 41:153–185.

    Article  CAS  Google Scholar 

  • Stitt, M., S.C. Huber, and P. Kerr. 1987. Control of photosynthetic sucrose synthesis.In: Hatch, M.D., and N.K. Boardman (eds.), Biochemistry of Plants. Academic, New York. 10:327–407.

    Google Scholar 

  • Stitt, M., I. Wilke, R. Feil, and H.W. Heldt. 1988. Coarse control of sucrose phosphate synthase in leaves: alterations of kinetic properties in response to the rate of photosynthesis and the accumulation of sucrose. Planta 174:217–230.

    Article  CAS  Google Scholar 

  • Stitt, M., and U. Sonnewald. 1995. Regulation of metabolism in transgenic plants. Annu Rev Plant Physiol Plant Mol Biol 46:341–368.

    Article  CAS  Google Scholar 

  • Sweetlove, L.J., M.M. Burrell, and T. ap Rees. 1996a. Characterization of transgenic potato(Solanum tuberosum) tubers with increased ADPglucose pyrophosphorylase. Biochem J 320:487–492.

    PubMed  CAS  Google Scholar 

  • Sweetlove, L.J., M.M. Burrell, and T. ap Rees. 1996b. Starch metabolism in tubers of transgenic potato(Solanum tuberosum) with increased ADPglucose pyrophosphorylase. Biochem J 320:493–498.

    PubMed  CAS  Google Scholar 

  • Tauberger, E., A.R. Fernie, M. Emmermann, A. Renz, J. Kossmann, L. Willmitzer, and R.N. Trethewey. 2000. Antisense inhibition of plastidial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose-6-phosphate. Plant J 23:43–53.

    Article  PubMed  CAS  Google Scholar 

  • Theologis, A., and G.G. Laties. 1976. Membrane lipid integrity as a prerequisite of cyanide-resistant respiration in potato slices. Plant Physiol 57:S-93.

    Google Scholar 

  • Thill, C.A. and S.J. Peloquin. 1994. Inheritance of potato chip color at the 24-chromosome level. Am Potato J 71:629–646.

    Article  Google Scholar 

  • Trevanion, S.J., and N.J. Kruger. 1991. Effect of temperature on the kinetic properties of pyrophosphate:fructose 6-phosphate phos-photransferase from potato tuber. J. Plant Physiol 137:753–759.

    CAS  Google Scholar 

  • Viola, R. and H.V. Davies. 1994. Effect of temperature on pathways of carbohydrate metabolism in tubers of potato(Solanum tuberosum L). Plant Science 103:135–143.

    Article  CAS  Google Scholar 

  • Vliet, W.F. and W.H. vanSchriemer. 1960. The sugar accumulation of potatoes kept at low temperature, as studied in a small section of Dutch varieties. Eur Potato J 3:263–271.

    Article  Google Scholar 

  • Willlmitzer, L., W.B. Frommer, J. Kossmann, B. Müller-Röber, J. Riesmeier, U. Sonnewald, U-I. Flügge, and H. Heldt. 1994. Transgenic potatoes changed in carbohydrate partitioning and allocation.In: Belknap, W.R., M.E. Vayda, and W.P. Park (eds.), The Molecular and Cellular Biology of the Potato. 2nd Edition, C.A.B. International, Wallingford, UK. pp.57–65.

    Google Scholar 

  • Workman, M., A. Cameron, and J. Twomey. 1979. Influence of chilling on potato tuber respiration, sugar, o-dihydroxyphenolic content and membrane permeability. Am Potato J 56:277–288.

    Article  CAS  Google Scholar 

  • Yada, R.Y., R.H. Coffin, K.W. Baker, and M.J. Leszkowiat. 1990. An electron microscopic examination of the amyloplast membranes from a potato seedling resistant and a processing potato cultivar susceptible to low temperature sweetening. Can Inst Fd Sci Technol J 23:145–148.

    Google Scholar 

  • Zhou, D., A. Mattoo, N. Li, H. Imaseki, and T. Solomos. 1994.Plant Gene Register. Complete nucleotide sequence of potato tuber acid invertase cDNA. Plant Physiol 106:397–398.

    Article  PubMed  CAS  Google Scholar 

  • Zrenner, R., K. Schuler, and U. Sonnewald. 1996. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta 198:246–252.

    Article  PubMed  CAS  Google Scholar 

  • Zrenner, R., L. Willmitzer, and U. Sonnewald. 1993. Analysis of the expression of potato uridinediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA. Planta 190:247–252.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Sowokinos.

Additional information

University of Minnesota, Agricultural Experimental Station Scientific Journal Series No: 001210061.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sowokinos, J.R. Biochemical and molecular control of cold-induced sweetening in potatoes. Am. J. Pot Res 78, 221–236 (2001). https://doi.org/10.1007/BF02883548

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02883548

Additional key words

Navigation