Skip to main content
Log in

Long-chain fatty acids and ethanol affect the properties of membranes inDrosophila melanogaster larvae

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The larval fatty acid composition of neutral lipids and membrane lipids was determined in three ethanol-tolerant strains ofDrosophila melanogaster. Dietary ethanol promoted a decrease in long-chain fatty acids in neutral lipids along with enhanced alcohol dehydrogenase (EC 1.1.1.1) activity in all of the strains. Dietary ethanol also increased the incorporation of14C-ethanol into fatty acid ethyl esters (FAEE) by two- to threefold and decreased the incorporation of14C-ethanol into free fatty acids (FFA). When cultured on sterile, defined media with stearic acid at 0 to 5 mM, stearic acid decreased ADH activity up to 33%. In strains not selected for superior tolerance to ethanol, dietary ethanol promoted a loss of long-chain fatty acids in membrane lipids. The loss of long-chain fatty acids in membranes was strongly correlated with increased fluidity in hydrophobic domains of mitochondrial membranes as determined by electron spin resonance and correlated with a loss of ethanol tolerance. In the ethanol-tolerant E2 strain, which had been exposed to ethanol for many generations, dietary ethanol failed to promote a loss of long-chain fatty acids in membrane lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bijlsma-Meeles, E., and Bijlsma, E. (1988). The alcohol dehydrogenase polymorphism inDrosophila melanogaster: Fitness measurements and predictions under conditions with no alcohol stress.Genetics 120743.

    CAS  PubMed  Google Scholar 

  • Bora, P. S., and Lange, L. G. (1991). Fatty acid ethyl esters, alcohol, and liver changes. In Watson, R. R. (ed.),Drug and Alcohol Abuse Reviews: Liver Pathology and Alcohol Humana Press, NJ, pp. 241–257.

    Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding.Anal. Biochem. 72248.

    Article  CAS  PubMed  Google Scholar 

  • Briscoe, D. A., Robertson, A., and Malpica, J. (1975). Dominance atAdh locus in response of adultDrosophila melanogaster to environmental alcohol.Nature 255148.

    Article  CAS  PubMed  Google Scholar 

  • Cavener, D. R., and Clegg, M. T. (1978). Dynamics of correlated genetic systems. IV. Multilocus effects of ethanol stress environments.Genetics 90629.

    CAS  PubMed  Google Scholar 

  • Cavener, D. R., and Clegg, M. T. (1981). Multigenic response to ethanol inDrosophila melanogaster.Evolution 351.

    CAS  Google Scholar 

  • Chin, J. H., and Goldstein, D. B. (1985). Effects of alcohols on membrane fluidity and lipid composition. In Aloia, R. C., and Boggs, J. M. (eds.),Membrane Fluidity in Biology, Vol. 3 Academic Press, New York, pp. 1–58.

    Google Scholar 

  • Cullis, P. R., and De Kruijff, B. (1979). Lipid polymorphism and functional roles of lipids in biological membranes.Biochim. Biophys. Acta 559399.

    CAS  PubMed  Google Scholar 

  • David, J., Bocquet, C., Arens, M., and Fouillet, P. (1976). Biological role of alcohol dehydrogenase in the tolerance ofDrosophila melanogaster to aliphatic alcohols: Utilization of an ADH-null mutant.Biochem. Genet. 14989.

    Article  CAS  PubMed  Google Scholar 

  • Dittmer, J. C., and Wells, M. A. (1969). Quantitative and qualitative analysis of lipids and lipid components. In Lowenstein, J. M. (ed.),Methods in Enzymology, Vol. 14 Academic Press, New York, pp. 484–530.

    Google Scholar 

  • Dorado, G., and Barbancho, M. (1984). Differential responses inDrosophila melanogaster to environmental ethanol: Modification of fitness components at theAdh locus.Heredity 53309.

    Google Scholar 

  • Folch, J., Lees, M., and Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues.J. Biol. Chem. 226497.

    CAS  PubMed  Google Scholar 

  • Gaffney, B. J. (1976). Practical considerations for the calculation of order parameters for fatty acid or phospholipid spin labels in membranes. In Berliner, L. J. (ed.),Spin Labeling: Theory and Applications Academic Press, New York, pp. 567–571.

    Google Scholar 

  • Geer, B. W., and Perille, T. T. (1977). Effects of dietary sucrose and environmental temperature on fatty acid synthesis inDrosophila melanogaster.Insect Biochem. 7371.

    Article  CAS  Google Scholar 

  • Geer, B. W., Langevin, M. L., and McKechnie, S. W. (1985). Dietary ethanol and lipid synthesis inDrosophila melanogaster.Biochem. Genet. 23607.

    Article  CAS  PubMed  Google Scholar 

  • Geer, B. W., McKechnie, S. W., and Langevin, M. L. (1986). The effect of dietary ethanol on the composition of lipids ofDrosophila melanogaster larvae.Biochem. Genet. 2451.

    Article  CAS  PubMed  Google Scholar 

  • Geer, B. W., Dybas, L. K., and Shanner, L. J. (1989). Alcohol dehydrogenase and ethanol tolerance at the cellular level inDrosophila melanogaster.J. Exp. Zool. 25022.

    Article  CAS  PubMed  Google Scholar 

  • Geer, B. W., Heinstra, P. W. H., Kapoun, A. M., and van der Zel, A. (1990). Alcohol dehydrogenase and alcohol tolerance inDrosophila melanogaster, In Barker, J. S. F., and Starmer, W. T. (eds.),Ecological and Evolutionary Genetics of Drosophila Plenum Press, New York, pp. 231–252.

    Google Scholar 

  • Geer, B. W., Miller, R. R., Jr., and Heinstra, P. W. H. (1991a). Genetic and dietary control of alcohol degradation inDrosophila, In Watson, R. R. (ed.),Drug and Alcohol Abuse Reviews: Liver Pathology and Alcohol Humana Press, Clifton, NJ, pp. 325–373.

    Google Scholar 

  • Geer, B. W., McKechnie, S. W., Heinstra, P. W. H., and Pyka, M. J. (1991b). Heritable variation in ethanol tolerance and its association with biochemical traits inDrosophila melanogaster.Evolution 451107.

    CAS  Google Scholar 

  • Goldstein, D. B. (1989). Alcohol and biological membranes. In Goedde, H. W., and Agarwal, D. P. (eds.),Alcoholism: Biomedical and Genetic Aspects Pergamon Press, New York, pp. 87–112.

    Google Scholar 

  • Heinstra, P. W. H., Geer, B. W., Seykens, D., and Langevin, M. L. (1989). The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase (EC 1.2.1.3) inDrosophila melanogaster larvae.Biochem. J. 259791.

    CAS  PubMed  Google Scholar 

  • Hennessey, T. M., Andrews, D., and Nelson, D. L. (1983). Biochemical studies of the excitable membrane ofParamecium tetraurelia. VII. Sterols and other neutral lipids of cells and cilia.J. Lipid Res. 24575.

    CAS  PubMed  Google Scholar 

  • Hickey, D. A., and McLean, M. D. (1980). Selection for ethanol tolerance andAdh allozymes in natural populations ofDrosophila melanogaster.Genet. Res. 3611.

    Article  CAS  PubMed  Google Scholar 

  • Jain, M. (1972).The Bimolecular Membrane Van Nostrand Reinhold, New York, pp. 1–51, 383–408.

    Google Scholar 

  • Keith, A. D. (1966). Fatty acid metabolism inD. melanogaster: Formation of palmitoleate.Life Sci. 6213.

    Google Scholar 

  • Keith, A. D. (1967). Fatty acid metabolism inDrosophila melanogaster: Interaction between dietary fatty acids andde novo synthesis.Comp. Biochem. Physiol. 21587.

    Article  CAS  PubMed  Google Scholar 

  • Kerver, J. W. M., and Van Delden, W. (1985). Development of tolerance to ethanol in relation to the alcohol dehydrogenase locus inDrosophila melanogaster. I. Adult to egg-to-adult survival in relation to ADH activity.Heredity 55355.

    CAS  Google Scholar 

  • Lin, T.-N., Sun, A. Y., and Sun, G. Y. (1988). Effects of ethanol on arachidonic acid incorporation into lipids of a plasma membrane fraction isolated from brain cerebral cortex.Alcohol Clin. Exp. Res. 12795.

    Article  CAS  PubMed  Google Scholar 

  • Littleton, J. M. (1990). Effects of ethanol on membranes and their associated functions. In Crow, K. E., and Batt, R. D. (eds.),Human Metabolism of Alcohol, Vol. 3, CRC Press, Boca Raton, FL pp. 161–173.

    Google Scholar 

  • Marks, R. W., Brittnacher, J. G., McDonald, J. F., Prout, T., and Ayala, F. J. (1980). Wineries,Drosophila, alcohol and ADH.Oecologia 47141.

    Article  Google Scholar 

  • McDonald, J. F., Chambers, G. K., David, J., and Ayala, F. J. (1977). Adaptive response due to changes in gene regulation: A study withDrosophila.Proc. Natl. Acad. Sci. USA 744562.

    CAS  PubMed  Google Scholar 

  • McKechnie, S. W., and Geer, B. W. (1984). Regulation of alcohol dehydrogenase inDrosophila melanogaster by dietary alcohol and carbohydrate.Insect Biochem. 14231.

    Article  CAS  Google Scholar 

  • McKechnie, S. W., and Geer, B. W. (1993). Long-chain dietary fatty acids affect the capacity ofDrosophila melanogaster to tolerate ethanol.J. Nutr. 123106.

    CAS  PubMed  Google Scholar 

  • McKenzie, J. A., and McKechnie, S. W. (1978). Ethanol tolerance and theAdh polymorphism in a natural populationDrosophila melanogaster.Nature 27275.

    Article  CAS  PubMed  Google Scholar 

  • McKenzie, J. A., and Parsons, P. A. (1974). Microdifferentiation in a natural population ofDrosophila melanogaster to alcohol in the environment.Genetics 77385.

    CAS  PubMed  Google Scholar 

  • Metcalfe, L. D., Schmitz, A. A., and Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis.Anal. Chem. 38514.

    Article  CAS  Google Scholar 

  • Miller, R. R., Jr., Heinstra, P. W. H., and Geer, B. W. (1992). Metabolic flux and the role of lipids in alcohol tolerance inDrosophila. In Watson, R. R. (ed.),Nutrition and Alcohol CRC Press, Boca Raton, FL, pp. 205–242.

    Google Scholar 

  • Miller, R. R., Jr., Yates, J. W., and Geer, B. W. (1993a). Dietary ethanol reduces phosphatidylcholine levels and inhibits the uptake of dietary choline inDrosophila melanogaster larvae.Comp. Biochem. Physiol. 104A837.

    Article  CAS  Google Scholar 

  • Miller, R. R., Jr., Yates, J. W., and Geer, B. W. (1993b). Dietary ethanol stimulates the activity of phosphatidylcholine-specific phospholipase D and the formation of phosphatidylethanol inDrosophila melanogaster larvae.Insect Biochem. Mol. Biol. (in press).

  • Rottenberg, H. (1991). Liver cell membrane adaptation to chronic alcohol consumption. In Watson, R. R. (ed.),Drug and Alcohol Abuse Reviews: Liver Pathology and Alcohol Humana Press, Clifton, NJ, pp. 91–115.

    Google Scholar 

  • Seeman, P. (1972). The membrane actions of anesthetics and tranquilizers.Pharmacol. Rev. 24583.

    CAS  PubMed  Google Scholar 

  • Sun, G. Y., and Sun, A. Y. (1985). Ethanol and membrane lipids.Alcohol Clin. Exp. Res. 9164.

    CAS  PubMed  Google Scholar 

  • Szidonya, J., Farkas, T., and Pali, T. (1990). The fatty acid constitution and ordering state of membranes in dominant temperature-sensitive lethal mutation and wild-typeDrosophila melanogaster larvae.Biochem. Genet. 28233.

    CAS  PubMed  Google Scholar 

  • Taraschi, T. F., and Rubin, E. (1985). Biology of disease: Effects of ethanol on the chemical and structural properties of biologic membranes.Lab. Invest. 52120.

    CAS  PubMed  Google Scholar 

  • Taraschi, T. F., Wu, A., and Rubin, E. (1985). Phospholipid spin probes measure the effects of ethanol on the molecular order of liver microsomes.Biochemistry 247096.

    Article  CAS  PubMed  Google Scholar 

  • Tilcock, C. P. S., and Cullis, P. R. (1987). Lipid polymorphism.Ann. N.Y. Acad. Sci. 49288.

    CAS  PubMed  Google Scholar 

  • Tilghman, J. A., and Geer, B. W. (1988). The effects of choline deficiency on the lipid composition and ethanol tolerance ofDrosophila melanogaster.Comp. Biochem. Physiol. 90C439.

    CAS  Google Scholar 

  • Van Delden, W. (1982). The alcohol dehydrogenase polymorphism inDrosophila melanogaster. Selection at an enzyme locus.Evol. Biol. 15187.

    Google Scholar 

  • Van Delden, W., and Kamping, A. (1988). Selection againstAdh null alleles inDrosophila melanogaster.Heredity 61209.

    Google Scholar 

  • van der Zel, A., Dadoo, R., Geer, B. W., and Heinstra, P. W. H. (1991). The involvement of catalase in alcohol metabolism inDrosophila melanogaster larvae.Arch. Biochem. Biophys. 287121.

    Article  PubMed  Google Scholar 

  • Waring, A. J., Rottenberg, H., Ohnishi, T., and Rubin, E. (1981). Membranes and phospholipids of liver mitochondria from chronic alcoholic rats are resistant to membrane disordering by ethanol.Proc. Natl. Acad. Sci. USA 782582.

    CAS  PubMed  Google Scholar 

  • Windle, J. J. (1981). Hyperfine coupling constants for nitroxide spin probes in water and carbon tetrachloride.J. Magn. Reson. 45432.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are grateful for the support of National Institutes of Health Grant AA06702 (B.W.G.) and National Science Foundation Grant CHE-891987 (R.G.K.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, R.R., Dare, A.O., Moore, M.L. et al. Long-chain fatty acids and ethanol affect the properties of membranes inDrosophila melanogaster larvae. Biochem Genet 31, 113–131 (1993). https://doi.org/10.1007/BF02399919

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02399919

Key words

Navigation