Skip to main content

Product Integrity and Reliability in Design

  • Book
  • © 2001

Overview

  • First book to take a process-oriented view of failure and reliability
  • Case studies provide practical demonstration of integrated reliability analysis
  • Suitable for both graduate students and practitioners

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 16.99 USD 84.99
Discount applied Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (14 chapters)

  1. Concepts

  2. Failure Mechanics

  3. Testing and Failure Analysis

Keywords

About this book

Product Integrity and Reliability in Design is intended to serve either as a text for graduate students or as a reference for practicing engineers. The book develops the root-cause approach to reliability - often referred to as "physics of failure" in the reliability engineering field. It approaches the subject from the point of view of a process and integrates the necessary methods to support that process. The book can be used to teach first- or second-year postgraduate students in mechanical, electrical, manufacturing and materials engineering about addressing issues of reliability during product development. It will also serve practicing engineers involved in the design and development of electrical and mechanical components and systems, as a reference.
The book takes an interdisciplinary approach appropriate to system engineering, stressing concepts that can be integrated into design and placing less emphasis on traditional assumptions about reliability and analysis as a separate development activity. Several case studies emphasize the understanding of failure mechanisms and failure prevention and show how reliability methods, including simulation and testing can be integrated into design and development.

Editors and Affiliations

  • School of Materials Science and Engineering, Mailstop 32-202, College of Engineering, Seoul National University, Seoul, Korea

    John W. Evans

  • Quentech, Kyonggi-do, Korea

    Jillian Y. Evans

Bibliographic Information

Publish with us