Skip to main content

New Developments: Use of Stem Cells and Gene Therapy

  • Reference work entry
  • First Online:
Handbook of Neurourology
  • 426 Accesses

Abstract

Stem cells have revolutionized medicine. Blood stem cell transplantation is a proven and essential therapy for more than 70 diseases. Stem cell therapies are progressively entering clinical reality. Among the phase III clinical studies, most trials assess hemato-oncological diseases; however, some pivotal studies assess the value of stem cell application in non-oncological scenarios.

Despite the almost enthusiastic environment surrounding stem cell research and gene therapy, both technologies have not really succeeded into functional urology yet – at least on a translational level. The only relevant stem cell applications in functional urological diseases so far have been in incontinence and erectile dysfunction (ED). This book has dedicated this chapter which describes the role of bladder tissue engineering in neurogenic bladder. The following article will first focus on stem cell sources. Then, the next articles will discuss preclinical and clinical data of stem cell and gene therapy in erectile dysfunction and incontinence. And finally the last article will highlight interesting preclinical studies using innovative new strategies in experimental models of neurogenic bladder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Mimeault, R. Hauke, S.K. Batra, Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin. Pharmacol. Ther. 82, 252–264 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. National Marrow Donor Program, diseases treatable by transplants. https://bethematch.org. Accessed Aug 2017

  3. N.S. Majhail, S.H. Farnia, P.A. Carpenter, Indications for autologous and allogeneic hematopoietic cell transplantation: guidelines from the American Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant.: J. Am. Soc. Blood Marrow Transplant. 21, 1863–1869 (2015)

    Article  Google Scholar 

  4. Worldwide Network for Blood & Marrow Transplantation, One million transplants. www.wbmt.org. Accessed Aug 2017

  5. J. Barfoot, Stem cell research: trends and perspectives on the evolving international landscape. https://www.elsevier.com/research-intelligence/resource-library/stem-cell-research-trends-and-perspectives-on-the-evolving-international-landscape. Accessed Aug 2017

  6. https://pubmed.ncbi.nlm.nih.gov/?term=stem+cell

  7. National Library of Medicine, search terms: intervention: “stem cells”, limits: “study phase II or III” and “recruiting”. https://clinicaltrials.gov/ct2/results?recrs=ab&cond=phase+III&term=stem+cell&cntry=&state=&city=&dist=. Accessed Aug 2017

  8. M.J. Weiss, C.G. Mullighan, Welcoming a new age for gene therapy in hematology. Blood 127, 2523–2524 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. National Library of Medicine, search terms: intervention: “gene therapy”, limits: “study phase II or III” and “recruiting”. https://clinicaltrials.gov/ct2/results?recrs=ab&cond=gene+therapy&term=phase+III&cntry=&state=&city=&dist=. Accessed Aug 2017

  10. J.H. Kim, H.J. Lee, Y.S. Song, Treatment of bladder dysfunction using stem cell or tissue engineering technique. Korean J. Urol. 55, 228–238 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  11. O. Lindvall, Z. Kokaia, Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. D.J. Cote, A.L. Bredenoord, T.R. Smith, et al., Ethical clinical translation of stem cell interventions for neurologic disease. Neurology 88, 322–328 (2017)

    Article  PubMed  Google Scholar 

  13. M. Simonato, J. Bennett, N.M. Boulis, et al., Progress in gene therapy for neurological disorders. Nat. Rev. Neurol. 9, 277–291 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Alessandrini, O. Preynat-Seauve, K. De Bruin, M.S. Pepper, Stem cell therapy for neurological disorders. S. Afr. Med. J. 109(8b), 70–77 (2019). https://doi.org/10.7196/SAMJ.2019.v109i8b.14009. PMID: 31662153

    Article  CAS  PubMed  Google Scholar 

  15. Y.Y. Chan, S.K. Sandlin, E.A. Kurzrock, et al., The current use of stem cells in bladder tissue regeneration and bioengineering. Biomedicine 5, E4 (2017)

    Google Scholar 

  16. J. Smolar, M. Horst, S. Salemi, D. Eberli, Predifferentiated smooth muscle-like adipose-derived stem cells for bladder engineering. Tissue Eng. Part A 26(17–18), 979–992 (2020). https://doi.org/10.1089/ten.TEA.2019.0216. Epub 2020 May 21. PMID: 32093575

    Article  CAS  PubMed  Google Scholar 

  17. Y.Y. Chan, S.K. Sandlin, E.A. Kurzrock, S.L. Osborn, The current use of stem cells in bladder tissue regeneration and bioengineering. Biomedicines 5(1), 4 (2017). https://doi.org/10.3390/biomedicines5010004. PMID: 2853634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Bongso, C.Y. Fong, K. Gauthaman, Taking stem cells to the clinic: major challenges. J. Cell. Biochem. 105, 1352–1360 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. D.M. Choumerianou, H. Dimitriou, M. Kalmanti, Stem cells: promises versus limitations. Tissue Eng. Part B Rev. 14, 53–60 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. M. Renninger, B. Amend, J. Seibold, et al., Chapter 16: Regeneration of the lower urinary tract: clinical applications an future outlook, in Stem cell-Based Tissue Repair, (The Royal Society of Chemistry, 2011), pp. 324–345

    Google Scholar 

  21. A.A. Shokeir, A.M. Harraz, A.B. El-Din, et al., Tissue engineering and stem cells: basic principles and applications in urology. Int. J. Urol.: Off. J. Jpn. Urol. Assoc. 17, 964–973 (2010)

    Article  CAS  Google Scholar 

  22. K.D. Sievert, B. Amend, A. Stenzl, Tissue engineering for the lower urinary tract: a review of a state of the art approach. Eur. Urol. 52, 1580–1589 (2007)

    Article  PubMed  Google Scholar 

  23. G. Chamberlain, J. Fox, B. Ashton, et al., Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739–2749 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. M.F. Pittenger, A.M. Mackay, S.C. Beck, et al., Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Jiang, B.N. Jahagirdar, R.L. Reinhardt, et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. A. Furuta, L.K. Carr, N. Yoshimura, et al., Advances in the understanding of sress urinary incontinence and the promise of stem-cell therapy. Rev. Urol. 9, 106–112 (2007)

    PubMed  PubMed Central  Google Scholar 

  27. P.A. Zuk, M. Zhu, H. Mizuno, et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. C.S. Lin, Z.C. Xin, C.H. Deng, et al., Histol. Histopathol. 25, 807–815 (2010)

    PubMed  Google Scholar 

  29. F. Izadyar, J. Wong, C. Maki, et al., Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum. Reprod. 26, 1296–1306 (2011)

    Article  PubMed  Google Scholar 

  30. A. Atala, Tissue engineering of human bladder. Br. Med. Bull. 97, 81–104 (2011)

    Article  PubMed  Google Scholar 

  31. Q. Fu, X.F. Song, G.L. Liao, et al., Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology 75, 718–723 (2010)

    Article  PubMed  Google Scholar 

  32. Y.T. Okabe, S. Shimizu, Y. Suetake, H. Matsui-Hirai, S. Hasegawa, K. Takanari, K. Toriyama, Y. Kamei, T. Yamamoto, M. Mizuno, M. Gotoh, Biological characterization of adipose-derived regenerative cells used for the treatment of stress urinary incontinence. Int. J. Urol. 28(1), 115–124 (2021). https://doi.org/10.1111/iju.14408. Epub 2020 Dec 1. PMID: 33289131

    Article  CAS  PubMed  Google Scholar 

  33. A.K. Sharma, N.J. Fuller, R.R. Sullivan, et al., Defined populations of bone marrow derived mesenchymal stem and endothelial progenitor cells for bladder regeneration. J. Urol. 182, 1898–1905 (2009)

    Article  PubMed  Google Scholar 

  34. A.C. Drost, S. Weng, G. Feil, et al., In vitro myogenic differentiation of human bone marrow-derived mesenchymal stem cells as a potential treatment for urethral sphincter muscle repair. Ann. N. Y. Acad. Sci. 1176, 135–143 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. C. Wang, H. Wang, Q. Guo, X. Ang, B. Li, F. Han, Y. Fu, W. Chen, Bladder muscle regeneration enhanced by sustainable delivery of heparin from bilayer scaffolds carrying stem cells in a rat bladder partial cystectomy model. Biomed. Mater. 16(3) (2021). https://doi.org/10.1088/1748-605X/abf08b. PMID: 33740781

  36. J. Liu, J. Huang, Cell-to-cell contact induces human adipose tissue-derived stromal cells to differentiate into urothelium-like cells in vitro. Biochem. Biophys. Res. Commun. 390, 931–936 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. H. Ning, L.M. Gang, M.D. Guiting Lin, et al., Fibroblast growth factor 2 promotes endothelial differentiation of adipose tissue-derived stem cells. J. Sex. Med. 6, 967–979 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. M. Vaegler, K. Schenke-Layland, A. Stenzla, et al., Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011)

    Article  Google Scholar 

  39. K. Takahashi, K. Tanabe, M. Ohnuki, et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. M. Wernig, A. Meissner, R. Foreman, et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. K. Okita, M. Nakagawa, H. Hong, et al., Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. A. Malheiro, A. Harichandan, J. Bernardi, A. Seijas-Gamardo, G.F. Konings, P.G.A. Volders, A. Romano, C. Mota, P. Wieringa, L. Moroni, 3D culture platform of human iPSCs-derived nociceptors for peripheral nerve modeling and tissue innervation. Biofabrication 14(1) (2021). https://doi.org/10.1088/1758-5090/ac36bf. PMID: 34736244

  43. M.S. Damaser, K.D. Sievert, Tissue engineering and regenerative medicine: bench to bedside in urology. Preface. Adv. Drug Deliv. Rev. 82–83, v–vii (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  44. P. Salmikangas, M. Schuessler-Lenz, S. Ruiz, P. Celis, I. Reischl, M. Menezes-Ferreira, E. Flory, M. Renner, N. Ferry, Marketing regulatory oversight of advanced therapy medicinal products (ATMPs) in Europe: the EMA/CAT perspective. Adv. Exp. Med. Biol. 871, 103–130 (2015). https://doi.org/10.1007/978-3-319-18618-4_6. PMID: 26374215

    Article  PubMed  Google Scholar 

  45. B.T. O’Donnell, C.J. Ives, O.A. Mohiuddin, B.A. Bunnell, Beyond the present constraints that prevent a wide spread of tissue engineering and regenerative medicine approaches. Front. Bioeng. Biotechnol. 7, 95 (2019). https://doi.org/10.3389/fbioe.2019.00095

    Article  PubMed  PubMed Central  Google Scholar 

  46. R. Yiou, J.J. Yoo, A. Atala, Restoration of functional motor units in a rat model of sphincter injury by muscle precursor cell autografts. Transplantation 76, 1053–1060 (2003)

    Article  PubMed  Google Scholar 

  47. T.W. Cannon, Y.L. Ji, G. Somogyi, et al., Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra. Urology 62, 958–963 (2003)

    Article  PubMed  Google Scholar 

  48. A. Alwaal, A.A. Hussein, C.S. Lin, et al., Prospects of stem cell treatment in benign urological diseases. Korean J. Urol. 56, 257–265 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  49. M. Thurner, M. Deutsch, K. Janke, F. Messner, C. Kreutzer, S. Beyl, S. Couillard-Després, S. Hering, J. Troppmair, R. Marksteiner, Generation of myogenic progenitor cell-derived smooth muscle cells for sphincter regeneration. Stem Cell Res. Ther. 11(1), 233 (2020). https://doi.org/10.1186/s13287-020-01749-w. PMID: 32532320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S.-H. Lu, A.T.L. Lin, K.-K. Chen, H.S. Chiang, L.S. Chang, Characterization of smooth muscle differentiation of purified human skeletal muscle-derived cells. J. Cell Mol. Med. 15(3), 587–592 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. S. Badra, K.E. Andersson, A. Dean, et al., Long-term structural and functional effects of autologous muscle precursor cell therapy in a nonhuman primate model of urinary sphincter deficiency. J. Urol. 190, 1938–1945 (2013)

    Article  PubMed  Google Scholar 

  52. J.H. Kim, Y.S. Song, Current status of stem cell therapy in urology. Korean J. Urol. 56, 409–411 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  53. K.M. Peters, R.R. Dmochowski, L.K. Carr, et al., Autologous muscle derived cells for treatment of stress urinary incontinence in women. J. Urol. 192, 469–476 (2014)

    Article  PubMed  Google Scholar 

  54. K.D. Sievert, B. Amend, M. Renninger, et al., Value of stem cell therapy for the treatment of stress incontinence. Curr. Stat. Perspect.. Urol. A. 46, 264–267 (2007)

    Google Scholar 

  55. M. Mitterberger et al., Improment of urethral closure pressures after application of myoblasts depends on the number of injected cells. Eur. Urol. Suppl. 5, p40 (2006)

    Article  Google Scholar 

  56. A.M. Kajbafzadeh, A. Elmi, S. Payabvash, et al., Transurethral autologous myoblast injection for treatment of urinary incontinence in children with classic bladder exstrophy. J. Urol. 180, 1098–1105 (2008)

    Article  PubMed  Google Scholar 

  57. S.O. Kim, H.S. Na, D. Kwon, et al., Bone-marrow-derived mesenchymal stem cell transplantation enhances closing pressure and leak point pressure in a female urinary incontinence rat model. Urol. Int. 86, 110–116 (2011)

    Article  PubMed  Google Scholar 

  58. O. Loutochin, L. Campeau, N. Eliopoulos, et al., Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence. Neurourol. Urodyn. 30, 447 (2011)

    Article  PubMed  Google Scholar 

  59. J.Y. Lee, S.Y. Paik, S.H. Yuk, et al., Long term effects of muscle-derived stem cells on leak point pressure and closing pressure in rats with transected pudendal nerves. Mol. Cell 18, 309–313 (2004)

    CAS  Google Scholar 

  60. J.Y. Lee, T.W. Cannon, R. Pruchnic, et al., The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. Int. Urogynecol. J. Pelvic Floor Dysfunct. 14, 31–37 (2003)

    Article  CAS  PubMed  Google Scholar 

  61. C.J. Chermansky, T. Tarin, D.D. Kwon, et al., Intraurethral muscle-derived cell injections increase leak point pressure in a rat model of intrinsic sphincter deficiency. Urology 63, 780–785 (2004)

    Article  PubMed  Google Scholar 

  62. K.H. Kim, H.S. Lee, T.B. Kim, Does transplantation of adipose tissue-derived stem cells have effects on micturition center in stress urinary incontinence?: in vivo animal study. J. Urol. 181, 44 (2009)

    Article  Google Scholar 

  63. G. Lin, G. Wang, L. Banie, et al., Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy 12, 88–95 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. W. Zhao, C. Zhang, C. Jin, et al., Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur. Urol. 59, 155–163 (2011)

    Article  CAS  PubMed  Google Scholar 

  65. Y. Kinebuchi, N. Aizawa, T. Imamura, et al., Autologous bone-marrow-derived mesenchymal stem cell transplantation into injured rat urethral sphincter. Int. J. Urol. 17, 359–368 (2010)

    Article  PubMed  Google Scholar 

  66. T. Tamaki, Y. Uchiyama, Y. Okada, et al., Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells. Circulation 112, 2857–2866 (2005)

    Article  PubMed  Google Scholar 

  67. D. Kwon, Y. Kim, R. Pruchnic, et al., Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology 68, 449–454 (2006)

    Article  PubMed  Google Scholar 

  68. L.K. Carr, D. Steele, S. Steele, et al., 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int. Urogynecol. J. Pelvic Floor Dysfunct. 19, 881–883 (2008)

    Article  CAS  PubMed  Google Scholar 

  69. T. Yamamoto, M. Gotoh, R. Hattori, et al., Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: report of two initial cases. Int. J. Urol. 17, 75–82 (2010)

    Article  PubMed  Google Scholar 

  70. M. Gotoh, T. Yamamoto, M. Kato, et al., Regenerative treatment of male stress urinary incontinence by periurethral injection of autologous adipose-derived regenerative cells: 1-year outcomes in 11 patients. Int. J. Urol.: Off. J. Jpn. Urol. Assoc. 21, 294–300 (2014)

    Article  Google Scholar 

  71. A. Vinarov, A. Atala, J. Yoo, R. Slusarenco, M. Zhumataev, A. Zhito, D. Butnaru, Cell therapy for stress urinary incontinence: present-day frontiers. J. Tissue Eng. Regen. Med. 12(2), e1108–e1121 (2018). https://doi.org/10.1002/term.2444. Epub 2017 Aug 2. PMID: 28482121

    Article  CAS  PubMed  Google Scholar 

  72. M. Albersen, T.M. Fandel, G. Lin, et al., Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J. Sex. Med. 7, 3331–3340 (2010)

    Article  PubMed  Google Scholar 

  73. V. Protogerou, D. Chrysikos, V. Karampelias, Y. Spanidis, E.B. Sara, T. Troupis, Erectile dysfunction treatment using stem cells: a review. Medicines (Basel) 8(1), 2 (2021). https://doi.org/10.3390/medicines8010002. PMID: 33419152

    Article  PubMed  Google Scholar 

  74. M. Kendirci, L. Trost, B. Bakondi, et al., Transplantation of nonhematopoietic adult bone marrow stem/progenitor cells isolated by p75 nerve growth factor receptor into the penis rescues erectile function in a rat model of cavernous nerve injury. J. Urol. 184, 1560–1566 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  75. H. Wu, W.H. Tang, L.M. Zhao, D.F. Liu, Y.Z. Yang, H.T. Zhang, Z. Zhang, K. Hong, H.C. Lin, H. Jiang, Nanotechnology-assisted adipose-derived stem cell (ADSC) therapy for erectile dysfunction of cavernous nerve injury: In vivo cell tracking, optimized injection dosage, and functional evaluation. Asian J. Androl. 20(5), 442–447 (2018). https://doi.org/10.4103/aja.aja_48_18. PMID: 30004040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. T.J. Bivalacqua, W. Deng, M. Kendirci, et al., Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am. J. Physiol. Heart Circ. Physiol. 292, H1278–H1290 (2007)

    Article  CAS  PubMed  Google Scholar 

  77. X. Qiu, C. Sun, W. Yu, et al., Combined strategy of mesenchymal stem cells injection with VEGF gene therapy for the treatment of diabetes associated erectile dysfunction. J. Androl. 33, 37–44 (2012)

    Article  CAS  PubMed  Google Scholar 

  78. H.Y. Zhang, X.B. Jin, T.F. Lue, Three important components in the regeneration of the cavernous nerve: brain-derived neurotrophic factor, vascular endothelial growth factor and the JAK/STAT signaling pathway. Asian J. Androl. 13, 231–235 (2011)

    Article  PubMed  Google Scholar 

  79. C.S. Lin, H.C. Ho, K.C. Chen, et al., Intracavernosal injection of vascular endothelial growth factor induces nitric oxide synthase isoforms. BJU Int. 89, 955–960 (2002)

    Article  CAS  PubMed  Google Scholar 

  80. G. Lin, A.W. Shindel, T.M. Fandel, et al., Neurotrophic effects of brain-derived neurotrophic factor and vascular endothelial growth factor in major pelvic ganglia of young and aged rats. BJU Int. 105, 114–120 (2010)

    Article  CAS  PubMed  Google Scholar 

  81. X. Qiu, J. Villalta, L. Ferretti, et al., Effects of intravenous injection of adipose-derived stem cells in a rat model of radiation therapy-induced erectile dysfunction. J. Sex. Med. 9, 1834–1841 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  82. R. Yang, F. Fang, J. Wang, H. Guo, Adipose-derived stem cells ameliorate erectile dysfunction after cavernous nerve cryoinjury. Andrology 3(4), 694–701 (2015). https://doi.org/10.1111/andr.12047. PMID: 26198799

    Article  CAS  PubMed  Google Scholar 

  83. J.Y. Bahk, J.H. Jung, H. Han, et al., Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: preliminary report of 7 cases. Exp. Clin. Transplant.: Off. J. Middle East Soc. Organ Transplant. 8, 150–160 (2010)

    Google Scholar 

  84. M.A. Soebadi, U. Milenkovic, E. Weyne, et al., Stem cells in male sexual dysfunction: are we getting somewhere? Sex. Med. Rev. 5, 222–235 (2017)

    Article  PubMed  Google Scholar 

  85. M.K. Haahr, C.H. Jensen, N.M. Toyserkani, et al., Safety and potential effect of a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: an open-label phase I clinical trial. EBioMedicine 5, 204–210 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  86. R. Yiou, L. Hamidou, B. Birebent, et al., Safety of intracavernous bone marrow-mononuclear cells for postradical prostatectomy erectile dysfunction: an open dose-escalation pilot study. Eur. Urol. 69, 988–991 (2016)

    Article  PubMed  Google Scholar 

  87. A. Melman, N. Bar-Chama, A. McCullough, et al., hMaxi-K gene transfer in males with erectile dysfunction: results of the first human trial. Hum. Gene Ther. 17, 1165–1176 (2006)

    Article  CAS  PubMed  Google Scholar 

  88. G.J. Christ, K.E. Andersson, K. Williams, et al., Smooth-muscle-specific gene transfer with the human maxi-k channel improves erectile function and enhances sexual behavior in atherosclerotic cynomolgus monkeys. Eur. Urol. 56, 1055–1066 (2009)

    Article  CAS  PubMed  Google Scholar 

  89. S.D. Lokeshwar, P. Patel, S.M. Shah, R. Ramasamy, A systematic review of human trials using stem cell therapy for erectile dysfunction. Sex Med. Rev. 8(1), 122–130 (2020). https://doi.org/10.1016/j.sxmr.2019.08.003. Epub 2019 Oct 19. PMID: 31640911

    Article  PubMed  Google Scholar 

  90. A.L. Burnett, A. Nehra, R.H. Breau, et al., Erectile dysfunction: AUA guideline. J. Urol. 200, 633–641 (2018) https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Sexual-and-Reproductive-Health-2021.pdf

    Article  PubMed  Google Scholar 

  91. S.C. Krzastek, J. Bopp, R.P. Smith, et al., Recent advances in the understanding and management of erectile dysfunction. F1000Res 8, 102 (2019)

    Article  CAS  Google Scholar 

  92. M. Nitta, T. Tamaki, K. Tono, et al., Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells. Transplantation 89, 1043–1049 (2010)

    Article  PubMed  Google Scholar 

  93. C.C. Liang, T.H. Lee, S.D. Chang, Effect of umbilical cord blood stem cells transplantation on bladder dysfunction induced by cerebral ischemia in rats. Taiwan. J. Obstet. Gynecol. 55, 672–679 (2016)

    Article  PubMed  Google Scholar 

  94. R. Soler, C. Füllhase, C. Santos, et al., Development of bladder dysfunction in a rat model of dopaminergic brain lesion. Neurourol. Urodyn. 30, 188–193 (2011)

    Article  CAS  PubMed  Google Scholar 

  95. R. Soler, C. Füllhase, A. Hanson, et al., Stem cell therapy ameliorates bladder dysfunction in an animal model of Parkinson disease. J. Urol. 187, 1491–1497 (2012)

    Article  PubMed  Google Scholar 

  96. H. Salehi-Pourmehr, S. Hajebrahimi, R. Rahbarghazi, F. Pashazadeh, J. Mahmoudi, N. Maasoumi, et al., Stem cell therapy for nerogeneic bladder dysfunction in rodent models: a systematic review. Int. Nerourol. J. 24(3), 241–257 (2020)

    Article  Google Scholar 

  97. H.J. Lee, J.H. Won, S.H. Doo, et al., Inhibition of collagen deposit in obstructed rat bladder outlet by transplantation of superparamagnetic iron oxide-labeled human mesenchymal stem cells as monitored by molecular magnetic resonance imaging (MRI). Cell Transplant. 21, 959–970 (2012)

    Article  PubMed  Google Scholar 

  98. Y.S. Song, H.J. Lee, S.H. Doo, et al., Mesenchymal stem cells overexpressing hepatocyte growth factor (HGF) inhibit collagen deposit and improve bladder function in rat model of bladder outlet obstruction. Cell Transplant. 21, 1641–1650 (2012)

    Article  PubMed  Google Scholar 

  99. L.L. Woo, S.T. Tanaka, G. Anumanthan, et al., Mesenchymal stem cell recruitment and improved bladder function after bladder outlet obstruction: preliminary data. J. Urol. 185, 1132–1138 (2011)

    Article  PubMed  Google Scholar 

  100. M. Song, J. Heo, J.Y. Chun, et al., The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction-induced overactive bladder. Stem Cells Dev. 23, 654–663 (2014)

    Article  CAS  PubMed  Google Scholar 

  101. S. Chen, H.Y. Zhang, N. Zhang, et al., Treatment for chronic ischaemia-induced bladder detrusor dysfunction using bone marrow mesenchymal stem cells: an experimental study. Int. J. Mol. Med. 29, 416–422 (2012)

    CAS  PubMed  Google Scholar 

  102. Y.C. Huang, A.W. Shindel, H. Ning, et al., Adipose derived stem cells ameliorate hyperlipidemia associated detrusor overactivity in a rat model. J. Urol. 183, 1232–1240 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. H. Zhang, X. Qiu, A.W. Shindel, et al., Adipose tissue-derived stem cells ameliorate diabetic bladder dysfunction in a type II diabetic rat model. Stem Cells Dev. 21, 1391–1400 (2012)

    Article  CAS  PubMed  Google Scholar 

  104. W.F. Goins, N. Yoshimura, M.W. Phelan, et al., Herpes simplex virus mediated nerve growth factor expression in bladder and afferent neurons: potential treatment for diabetic bladder dysfunction. J. Urol. 165, 1748–1754 (2001)

    Article  CAS  PubMed  Google Scholar 

  105. M. Miyazato, K. Sugaya, W.F. Goins, et al., Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord-injured rats. Gene Ther. 16, 660–668 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. G.Q. Zhu, S.H. Jeon, K.W. Lee, H.J. Cho, U.-S. Ha, S.-H. Hong, J.Y. Lee, E.B. Kwon, H.J. Kim, S.M. Lee, H.Y. Kim, S.W. Kim, W.J. Bae, Engineered stem cells improve neurogenic bladder by overexpressing SDF-1 in a pelvic nerve injury rat model. Cell Transplant. 29, 963689720902466 (2020). https://doi.org/10.1177/0963689720902466. PMID: 32067480

    Article  PubMed  Google Scholar 

  107. W.J. Tian, S.H. Jeon, G.Q. Zhu, E.B. Kwon, G.E. Kim, W.J. Bae, H.J. Cho, U.S. Ha, S.H. Hong, J.Y. Lee, K.S. Kim, S.W. Kim, Effect of high-BDNF microenvironment stem cells therapy on neurogenic bladder model in rats. Transl. Androl. Urol. 10(1), 345–355 (2021). https://doi.org/10.21037/tau-20-1072. PMID: 33532323

    Article  PubMed  PubMed Central  Google Scholar 

  108. Z. Shang, C. Jia, H. Yan, B. Cui, J. Wu, Q. Wang, W. Gao, X. Cui, J. Li, T. Ou, Injecting RNA interference lentiviruses targeting the muscarinic 3 receptor gene into the bladder wall inhibits neurogenic detrusor overactivity in rats with spinal cord injury. Neurourol. Urodyn. 38(2), 615–624 (2019). https://doi.org/10.1002/nau.23894. Epub 2018 Dec 14. PMID: 30549314

    Article  CAS  PubMed  Google Scholar 

  109. S.J. Hodges, J.J. Yoo, N. Mishra, A. Atala, The effect of epigenetic therapy on congenital neurogenic bladders – a pilot study. Urology 75, 868–872 (2010)

    Article  PubMed  Google Scholar 

  110. S.J. Kim, Y.S. Cho, J.M. Park, Y.G. Na, K.H. Kim, Stem cell therapy for neurogenic bladder after spinal cord injury: clinically possible? Int. Neurourol. J. 24(Suppl 1), S3–S10 (2020). https://doi.org/10.5213/inj.2040150.075

    Article  PubMed  PubMed Central  Google Scholar 

  111. M.V. Mendonça, T.F. Larocca, B.S. de Freitas Souza, C.F. Villarreal, L.F. Silva, A.C. Matos, et al., Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res. Ther. 5, 126 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  112. H. Cheng, X. Liu, R. Hua, G. Dai, X. Wang, J. Gao, et al., Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J. Transl. Med. 12, 253 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  113. H. Salehi-Pourmehr, O. Nouri, A. Naseri, L. Roshangar, R. Rahbarghazi, S. Sadigh-Eteghad, J. Mahmoudi, H. Mostafaei, S. Hajebrahimi, H. Hashim, Clinical application of stem cell therapy in nerogenic bladder: a systematic review and metaanalysis. Int. Urogynecol. J. 33(8), 2081–2097 (2021). https://doi.org/10.1007/s00192-021-04986-6. PMID: 34767058

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Dietrich Sievert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sievert, KD. (2023). New Developments: Use of Stem Cells and Gene Therapy. In: Liao, L., Madersbacher, H. (eds) Handbook of Neurourology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1659-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1659-7_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1658-0

  • Online ISBN: 978-981-99-1659-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics