Skip to main content

Advertisement

Log in

Clinical application of stem cell therapy in neurogenic bladder: a systematic review and meta-analysis

  • Review Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

This review aims to investigate the effect of stem cell (SC) therapy on the management of neurogenic bladder (NGB) in four neurological diseases, including spinal cord injury (SCI), Parkinson’s disease (PD), multiple sclerosis (MS), and stroke, in the clinical setting.

Methods

An electronic database search was conducted in the Cochrane Library, EMBASE, Proquest, Clinicaltrial.gov, WHO, Google Scholar, MEDLINE via PubMed, Ovid, Web of Science, Scopus, ongoing trial registers, and conference proceedings in June 2019 and updated by hand searching on 1 February 2021. All randomized controlled trials (RCTs), quasi RCTs, phase I/II clinical trials, case-control, retrospective cohorts, and comprehensive case series that evaluated the regenerative potential of SCs on the management of NGB were included. Cochrane appraisal risk of bias checklist and the standardized critical appraisal instrument from the JBI Meta-Analysis of Statistics, Assessment, and Review Instrument (JBI-MAStARI) were used to appraise the studies.

Results

Twenty-six studies among 1282 relevant publications met our inclusion criteria. Only SC therapy was applied for SCI or MS patients. Phase I/II clinical trials (without control arm) were the most conducted studies, and only four were RCTs. Four studies with 153 participants were included in the meta-analysis. The main route of transplantation was via lumbar puncture. There were no serious adverse events. Only nine studies in SCI and one in MS have used urodynamics, and the others have reported improvement based on patient satisfaction. SC therapy did not significantly improve residual urine volume, detrusor pressure, and maximum bladder capacity. Also, the quality of these publications was low or unclear.

Conclusion

Although most clinical trials provide evidence of the safety and effectiveness of MSCs on the management of NGB, the meta-analysis results did not show a significant improvement; however, the interpretation of study results is difficult because of the lack of placebo controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamid R, Averbeck MA, Chiang H, Garcia A, Al Mousa RT, Oh SJ, et al. Epidemiology and pathophysiology of neurogenic bladder after spinal cord injury. World J Urol. 2018;36(10):1517–27.

    Article  PubMed  Google Scholar 

  2. Ginsberg D. The epidemiology and pathophysiology of neurogenic bladder. Am J Manag Care. 2013;19(10 Suppl):s191–6.

    PubMed  Google Scholar 

  3. Garcia-Arguello LY, O'Horo JC, Farrell A, Blakney R, Sohail MR, Evans CT, et al. Infections in the spinal cord-injured population: a systematic review. Spinal Cord. 2017;55(6):526–34.

    Article  CAS  PubMed  Google Scholar 

  4. Kreydin E, Welk B, Chung D, Clemens Q, Yang C, Danforth T, et al. Surveillance and management of urologic complications after spinal cord injury. World J Urol. 2018;36(10):1545–53.

    Article  PubMed  Google Scholar 

  5. Hearn JH, Selvarajah S, Kennedy P, Taylor J. Stigma and self-management: an interpretative phenomenological analysis of the impact of chronic recurrent urinary tract infections after spinal cord injury. Spinal Cord Series Cases. 2018;4:12.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cameron AP. Medical management of neurogenic bladder with oral therapy. Transl Androl Urol. 2016;5(1):51–62.

    PubMed  PubMed Central  Google Scholar 

  7. Kakabadze Z, Kipshidze N. Phase 1 trial of autologous bone marrow stem cell transplantation in patients with spinal cord. Injury. 2016;2016:6768274.

  8. Geffner LF, Santacruz P, Izurieta M, Flor L, Maldonado B, Auad AH, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant. 2008;17(12):1277–93.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med. 2014;12:253.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shroff G, Gupta R. Human embryonic stem cells in the treatment of patients with spinal cord injury. Ann Neurosci. 2015;22(4):208–16.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park WB, Kim SY, Lee SH, Kim HW, Park JS, Hyun JK. The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats. BMC Neurosci. 2010;11:119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clinical research ed). 2011;343:d5928.

    Article  Google Scholar 

  13. Dai G, Liu X, Zhang Z, Yang Z, Dai Y, Xu R. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Res. 2013;1533:73–9.

    Article  CAS  PubMed  Google Scholar 

  14. Chhabra HS, Sarda K, Arora M, Sharawat R, Singh V, Nanda A, et al. Autologous bone marrow cell transplantation in acute spinal cord injury--an Indian pilot study. Spinal Cord. 2016;54(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  15. El-Kheir WA, Gabr H, Awad MR, Ghannam O, Barakat Y, Farghali HA, et al. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transplant. 2014;23(6):729–45.

    Article  PubMed  Google Scholar 

  16. Vaquero J, Zurita M, Rico MA, Bonilla C, Aguayo C, Montilla J, et al. An approach to personalized cell therapy in chronic complete paraplegia: the Puerta de Hierro phase I/II clinical trial. Cytotherapy. 2016;18(8):1025–36.

    Article  PubMed  Google Scholar 

  17. Kishk NA, Gabr H, Hamdy S, Afifi L, Abokresha N, Mahmoud H, et al. Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil Neural Repair. 2010;24(8):702–8.

    Article  PubMed  Google Scholar 

  18. El Zayat A, Badran Y. The effect of transplantation of adipose-derived stem cells to spinal cord on the recovery of urinary bladder function in patients having spinal cord injuries: a urodynamic study. Egypt Rheumatol Rehabil. 2018;45(3):100–5.

    Article  Google Scholar 

  19. Vaquero J, Zurita M, Rico MA, Bonilla C, Aguayo C, Fernandez C, et al. Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy. 2017;19(3):349–59.

    Article  CAS  PubMed  Google Scholar 

  20. Oraee-Yazdani S, Hafizi M, Atashi A, Ashrafi F, Seddighi AS, Hashemi SM, et al. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: safety and possible outcome. Spinal Cord. 2016;54(2):102–9.

    Article  CAS  PubMed  Google Scholar 

  21. Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Satish Kumar KV. Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg. 2011;25(4):516–22.

    Article  PubMed  Google Scholar 

  22. Yazdani SO, Hafizi M, Zali AR, Atashi A, Ashrafi F, Seddighi AS, et al. Safety and possible outcome assessment of autologous Schwann cell and bone marrow mesenchymal stromal cell co-transplantation for treatment of patients with chronic spinal cord injury. Cytotherapy. 2013;15(7):782–91.

    Article  PubMed  Google Scholar 

  23. Jiang PC, Xiong WP, Wang G, Ma C, Yao WQ, Kendell SF, et al. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury. Exp Ther Med. 2013;6(1):140–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Seledtsova GV, Rabinovich SS, Belogorodtsev SN, Parlyuk OV, Seledtsov VI, Kozlov VA. Delayed results of transplantation of fetal neurogenic tissue in patients with consequences of spinal cord trauma. Bull Exp Biol Med. 2010;149(4):530–3.

    Article  CAS  PubMed  Google Scholar 

  25. Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy. 2009;11(7):897–911.

    Article  CAS  PubMed  Google Scholar 

  26. Bryukhovetskiy AS, Bryukhovetskiy IS. Effectiveness of repeated transplantations of hematopoietic stem cells in spinal cord injury. World J Transplant. 2015;5(3):110–28.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bansal H, Verma P, Agrawal A, Leon J, Sundell IB, Koka PS. Autologous bone marrow-derived stem cells in spinal cord injury. J Stem Cells. 2016;11(1):51–61.

    PubMed  Google Scholar 

  28. Shroff G. Human embryonic stem cell therapy in chronic spinal cord injury: a retrospective study. Clin Transl Sci. 2016;9(3):168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, et al. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy. 2013;15(2):185–91.

    Article  PubMed  CAS  Google Scholar 

  30. Sharma A, Gokulchandran N, Sane H, Badhe P, Kulkarni P, Lohia M, et al. Detailed analysis of the clinical effects of cell therapy for thoracolumbar spinal cord injury: an original study. J Neuro-Oncol. 2013;1:13–22.

    Google Scholar 

  31. Harris VK, Stark J, Vyshkina T, Blackshear L, Joo G, Stefanova V, et al. Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine. 2018;29:23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Riordan NH, Morales I, Fernandez G, Allen N, Fearnot NE, Leckrone ME, et al. Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. J Transl Med. 2018;16(1):57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Albu S, Kumru H, Coll R, Vives J, Vallés M, Benito-Penalva J, et al. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study. Cytotherapy. 2021;23(2):146–56.

    Article  CAS  PubMed  Google Scholar 

  34. Mendonça MVP, Larocca TF, de Freitas Souza BS, Villarreal CF, Silva LFM, Matos AC, et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther. 2014;5(6):126.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Munn Z, Aromataris E, Tufanaru C, Stern C, Porritt K, Farrow J, et al. The development of software to support multiple systematic review types: the Joanna Briggs institute system for the unified management, assessment and review of information (JBI SUMARI). Int J Evid-based Healthcare. 2019;17(1):36–43.

    Article  Google Scholar 

  36. Fu R, Vandermeer BW, Shamliyan TA, O’Neil ME, Yazdi F, Fox SH, et al. Handling continuous outcomes in quantitative synthesis. Methods Guide for Effectiveness and Comparative Effectiveness Reviews [Internet]: Agency for Healthcare Research and Quality (US); 2013.

  37. Chhabra HS, Lima C, Sachdeva S, Mittal A, Nigam V, Chaturvedi D, et al. Autologous olfactory [corrected] mucosal transplant in chronic spinal cord injury: an Indian pilot study. Spinal Cord. 2009;47(12):887–95.

    Article  CAS  PubMed  Google Scholar 

  38. Albu S, Kumru H, Coll R, Vives J, Vallés M, Benito-Penalva J, et al. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study. Cytotherapy. 2020.

  39. Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli CA, Lazzeri G, et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair. 2010;24(1):10–22.

    Article  PubMed  Google Scholar 

  40. Onifer SM, Smith GM, Fouad K. Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2011;8(2):283–93.

    Article  Google Scholar 

  41. Torres-Moreno MC, Papaseit E, Torrens M, Farre M. Assessment of efficacy and tolerability of medicinal cannabinoids in patients with multiple sclerosis: a systematic review and meta-analysis. JAMA Netw Open. 2018;1(6):e183485.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yokoyama O, Yoshiyama M, Namiki M, de Groat WC. Role of the forebrain in bladder overactivity following cerebral infarction in the rat. Exp Neurol. 2000;163(2):469–76.

    Article  CAS  PubMed  Google Scholar 

  43. Yokoyama O, Yoshiyama M, Namiki M, de Groat WC. Glutamatergic and dopaminergic contributions to rat bladder hyperactivity after cerebral artery occlusion. Am J Phys Regul Integr Comp Phys. 1999;276(4):R935–R42.

    CAS  Google Scholar 

  44. Ochodnický P, Cruz CD, Yoshimura N, Michel MC. Nerve growth factor in bladder dysfunction: contributing factor, biomarker, and therapeutic target. Neurourol Urodyn. 2011;30(7):1227–41.

    Article  PubMed  CAS  Google Scholar 

  45. Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, et al. International standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2003;26(Suppl 1):S50–6.

    Article  PubMed  Google Scholar 

  46. Salehi-Pourmehr H, Hajebrahimi S, Rahbarghazi R, Pashazadeh F, Mahmoudi J, Maasoumi N, et al. Stem cell therapy for neurogenic bladder dysfunction in rodent models: a systematic review. Int Neurourol J. 2020;24(3):241–57.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int. 2013;2013:786475.

    PubMed  PubMed Central  Google Scholar 

  48. Lawless MH, Lytle EJ, McGlynn AF, Engler JA. Surgical management of penetrating spinal cord injury primarily due to shrapnel and its effect on neurological outcome: a literature review and meta-analysis. J Neurosurg Spine. 2018;28(1):63–71.

    Article  PubMed  Google Scholar 

  49. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441(7097):1094–6.

    Article  CAS  PubMed  Google Scholar 

  50. Song S, Kamath S, Mosquera D, Zigova T, Sanberg P, Vesely DL, et al. Expression of brain natriuretic peptide by human bone marrow stromal cells. Exp Neurol. 2004;185(1):191–7.

    Article  CAS  PubMed  Google Scholar 

  51. Fan X, Wang J-Z, Lin X-M, Zhang L. Stem cell transplantation for spinal cord injury: a meta-analysis of treatment effectiveness and safety. Neural Regen Res. 2017;12(5):815–25.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xu P, Yang X. The efficacy and safety of mesenchymal stem cell transplantation for spinal cord injury patients: a meta-analysis and systematic review. Cell Transplant. 2019;28(1):36–46.

    Article  PubMed  Google Scholar 

  53. Neuhuber B, Barshinger AL, Paul C, Shumsky JS, Mitsui T, Fischer I. Stem cell delivery by lumbar puncture as a therapeutic alternative to direct injection into injured spinal cord. J Neurosurg Spine. 2008;9(4):390–9.

    Article  PubMed  Google Scholar 

  54. Martino G, Franklin RJ, Baron Van Evercooren A, Kerr DA. Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol. 2010;6(5):247–55.

    Article  PubMed  Google Scholar 

  55. Ben-Hur T. Cell therapy for multiple sclerosis. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2011;8(4):625–42.

    Article  Google Scholar 

  56. Ramon-Cueto A, Nieto-Sampedro M. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol. 1994;127(2):232–44.

    Article  CAS  PubMed  Google Scholar 

  57. Doucette R. Olfactory ensheathing cells: potential for glial cell transplantation into areas of CNS injury. Histol Histopathol. 1995;10(2):503–7.

    CAS  PubMed  Google Scholar 

  58. Su Z, He C. Olfactory ensheathing cells: biology in neural development and regeneration. Prog Neurobiol. 2010;92(4):517–32.

    Article  PubMed  Google Scholar 

  59. Radtke C, Wewetzer K. Translating basic research into clinical practice or what else do we have to learn about olfactory ensheathing cells? Neurosci Lett. 2009;456(3):133–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is part of a PhD thesis funded by the Research Center for Evidence-based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (grant no. 59224). The local ethics committee approved this meta-analysis of Tabriz University of Medical Sciences (IR.TBZMED.REC.1397.451). This study was funded by the Research Vice-Chancellor, Tabriz University of Medical Sciences, Tabriz, Iran, and Iran National Science Foundation (INSF) (grant no. 96010038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakineh Hajebrahimi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi-pourmehr, H., Nouri, O., Naseri, A. et al. Clinical application of stem cell therapy in neurogenic bladder: a systematic review and meta-analysis. Int Urogynecol J 33, 2081–2097 (2022). https://doi.org/10.1007/s00192-021-04986-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-021-04986-6

Keywords

Navigation