Skip to main content

Sonochemical Degradation of Aromatic Compounds, Surfactants, and Dyes in Aqueous Solutions

  • Reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry

Abstract

Sonochemical degradation of hazardous organic compounds such as dyes, organic acids, aromatic compounds, and surfactants is summarized. The effects of dissolved gas, pH, and the initial concentration of organic compounds were evaluated in aqueous solutions mainly using a standing wave sonication system with 200-kHz ultrasound. The relationship between physicochemical properties of aromatic compounds and rates of degradation is discussed for a range of aromatic compounds. The degradation mechanism and kinetics are described. The effects of various additives, such as inorganic ions, organic additives, inert solid particles, and reactive transition metal powders, and the effect of reaction vessel diameter on the rates of degradation are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okitsu K, Yue A, Tanabe S, Matsumoto H, Yobiko Y, Yoo Y (2002) Sonolytic control of rate of gold(III) reduction and size of formed gold nanoparticles: relation between reduction rates and sizes of formed nanoparticles. Bull Chem Soc Jpn 75:2289–2296

    Article  CAS  Google Scholar 

  2. Anjaneyulu Y, Chary NS, Raj DSS (2005) Decolourization of industrial effluents- available methods and emerging technologies- a review. Rev Environ Sci Biotechnol 4:245–273

    Article  CAS  Google Scholar 

  3. Rehorek A, Tauber M, Gubitz G (2004) Application of power ultrasound for azo dye degradation. Ultrason Sonochem 11:177–182

    Article  CAS  Google Scholar 

  4. Soriano JJ, Mathieu-Denoncourt J, Norman G, de Solla SR, VLanglois VS (2014) Toxicity of the azo dyes Acid Red 97 and Bismarck Brown Y to Western clawed frog (Silurana tropicalis). Environ Sci Pollut Res 21:3582–3591

    Article  CAS  Google Scholar 

  5. Okitsu K, Iwasaki K, Yobiko Y, Bandow H, Nishimura R, Maeda Y (2005) Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason Sonochem 12:255–262

    Article  CAS  Google Scholar 

  6. Neppiras EA (1980) Acoustic cavitation. Phys Rep 61:159–251

    Article  Google Scholar 

  7. Gutierrez M, Henglein A, Ibanez F (1991) Radical scavenging in the sonolysis of aqueous solutions of I−, Br−, and N3 −. J Phys Chem 95:6044–6047

    Article  CAS  Google Scholar 

  8. Henglein A, Kormann C (1985) Scavenging of OH radicals produced in the sonolysis of water. Int J Radiat Biol 48:251–258

    CAS  Google Scholar 

  9. Sostaric JZ, Riesz P (2002) Adsorption of surfactants at the gas/solution interface of cavitation bubbles: an ultrasound intensity-independent frequency effect in sonochemistry. J Phys Chem B 106:12537–12548

    Article  CAS  Google Scholar 

  10. Nagata Y, Mizukoshi Y, Okitsu K, Maeda Y (1996) Sonochemical formation of gold particles in aqueous solution. Radiat Res 146:333–338

    Article  CAS  Google Scholar 

  11. Sostaric JZ, Mulvaney P, Grieser F (1995) Sonochemical dissolution of MnO2 colloids. J Chem Soc Faraday Trans 91:2843–2846

    Article  CAS  Google Scholar 

  12. Yim B, Okuno H, Nagata Y, Nishimura R, Maeda Y (2002) Sonolysis of surfactants in aqueous solutions: an accumulation of solute in the interfacial region of the cavitation bubbles. Ultrason Sonochem 9:209–213

    Article  CAS  Google Scholar 

  13. Joseph JM, Destaillats H, Hung H-M, Hoffmann MR (2000) The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton’s reactions. J Phys Chem A 104:301–307

    Article  CAS  Google Scholar 

  14. Okitsu K, Nanzai B, Kawasaki K, Takenaka N, Bandow H (2009) Sonochemical decomposition of organic acids in aqueous solution: understanding of molecular behavior during cavitation by the analysis of a heterogeneous reaction kinetics model. Ultrason Sonochem 16:155–162

    Article  CAS  Google Scholar 

  15. The Chemical Society of Japan (ed) (1993) Kagaku Binran Kisohen (Handbook of chemistry in Japanese), vol 2, 4th edn. Maruzen, Tokyo, p 321

    Google Scholar 

  16. The Chemical Society of Japan (ed) (1993) Kagaku Binran Kisohen (Handbook of chemistry in Japanese), vol 2, 4th edn. Maruzen, Tokyo, pp 123, 126, 135

    Google Scholar 

  17. Aruoja V, Sihtmäe M, Dubourguier H-C, Kahru A (2011) Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: comparison with published data and QSARs. Chemosphere 84:1310–1320

    Article  CAS  Google Scholar 

  18. Parka J-S, Brown MT, Han T (2012) Phenol toxicity to the aquatic macrophyte Lemna paucicostata. Aquat Toxicol 106–107:182–188

    Article  Google Scholar 

  19. Nanzai B, Okitsu K, Takenaka N, Bandow H, Maeda Y (2008) Sonochemical degradation of various monocyclic aromatic compounds: relation between hydrophobicities of organic compounds and the decomposition rates. Ultrason Sonochem 15:478–483

    Article  CAS  Google Scholar 

  20. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O−) in aqueous solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  21. Kirschenbaum LK, Riesz P (2012) Sonochemical degradation of cyclic nitroxides in aqueous solution. Ultrason Sonochem 19:1114–1119

    Article  CAS  Google Scholar 

  22. Ashokkumar M, Hall R, Mulvaney P, Grieser F (1997) Sonoluminescence from aqueous alcohol and surfactant solutions. J Phys Chem B 101:10845–10850

    Article  CAS  Google Scholar 

  23. Price GJ, Ashokkumar M, Grieser F (2004) Sonoluminescence quenching of organic compounds in aqueous solution: frequency effects and implications for sonochemistry. J Am Chem Soc 126:2755–2762

    Article  CAS  Google Scholar 

  24. Caruso RA, Ashokkumar M, Grieser F (2002) Sonochemical formation of gold sols. Langmuir 18:7831–7836

    Article  CAS  Google Scholar 

  25. Nanzai B, Okitsu K, Takenaka N, Bandow H (2009) Sonochemical degradation of alkylbenzene sulfonates and kinetics analysis with a Langmuir type mechanism. J Phys Chem C 113:3735–3739

    Article  CAS  Google Scholar 

  26. Yang L, Rathman JF, Weavers LK (2005) Degradation of alkylbenzene sulfonate surfactants by pulsed ultrasound. J Phys Chem B 109:16203–16209

    Article  CAS  Google Scholar 

  27. Yang L, Rathman JF, Weavers LK (2006) Sonochemical degradation of alkylbenzene sulfonate surfactants in aqueous mixtures. J Phys Chem B 110:18385–18391

    Article  CAS  Google Scholar 

  28. Nanzai B, Okitsu K, Takenaka N, Bandow H (2009) Effects of initial concentration of LASs on the rates of sonochemical degradation and cavitation efficiency. Res Chem Intermed 35:841–849

    Article  CAS  Google Scholar 

  29. Brooke D, Footitt A, Nwaogu TA (2004) Environmental risk evaluation report: perfluorooctanesulphonate (PFOS). Chemicals Assessment Section, Environment Agency, Wallingford

    Google Scholar 

  30. Zareitalabad P, Siemens J, Hamer M, Amelung W (2013) Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater – a review on concentrations and distribution coefficients. Chemosphere 91:725–732

    Article  CAS  Google Scholar 

  31. Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S (2006) Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environ Sci Technol 40:1049–1054

    Article  CAS  Google Scholar 

  32. Nakayama S, Harada K, Inoue K, Sasaki K, Seery B, Saito N, Koizumi A (2005) Distributions of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in Japan and their toxicities. Environ Sci 12:293–313

    CAS  Google Scholar 

  33. Manzetti S, Van Der Spoel ER, Van Der Spoel D (2014) Chemical properties, environmental fate, and degradation of seven classes of pollutants. Chem Res Toxicol 27:713–737

    Article  CAS  Google Scholar 

  34. Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y (2005) Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environ Sci Technol 39:3388–3392

    Article  CAS  Google Scholar 

  35. Campbell TY, Vecitis CD, Mader BT, Hoffmann MR (2009) Perfluorinated surfactant chain-length effects on sonochemical kinetics. J Phys Chem A 113:9834–9842

    Article  CAS  Google Scholar 

  36. Cheng J, Vecitis CD, Park H, Mader BT, Hoffmann MR (2010) Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in groundwater: kinetic effects of matrix inorganics. Environ Sci Technol 44:445–450

    Article  CAS  Google Scholar 

  37. Nagata Y, Hirai K, Bandow H, Maeda Y (1996) Decomposition of hydroxybenzoic and humic acids in water by ultrasonic irradiation. Environ Sci Technol 30:1133–1138

    Article  CAS  Google Scholar 

  38. Nagata Y, Nakagawa M, Okuno H, Mizukoshi Y, Yim B, Maeda Y (2000) Sonochemical degradation of chlorophenols in water. Ultrason Sonochem 7:115–120

    Article  CAS  Google Scholar 

  39. Yim B, Yoo Y, Maeda Y (2003) Sonolysis of alkylphenols in aqueous solution with Fe(II) and Fe(III). Chmosphere 50:1015–1023

    Article  CAS  Google Scholar 

  40. Minero C, Pellizzari P, Maurino V, Pelizzetti E, Vione D (2008) Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters. Appl Catal B Environ 77:308–316

    Article  CAS  Google Scholar 

  41. Moumeni O, Hamdaoui O (2012) Intensification of sonochemical degradation of malachite green by bromide ions. Ultrason Sonochem 19:404–409

    Article  CAS  Google Scholar 

  42. Thi L-AP, Do H-T, Lo S-L (2014) Enhancing decomposition rate of perfluorooctanoic acid by carbonate radical assisted sonochemical treatment. Ultrason Sonochem 21:1875–1880

    Article  Google Scholar 

  43. Lin J-C, Lo S-L, Hu C-Y, Lee Y-C, Kuo J (2015) Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions. Ultrason Sonochem 22:542–547

    Article  CAS  Google Scholar 

  44. Seymour JD, Gupta RB (1997) Oxidation of aqueous pollutants using ultrasound: salt-induced enhancement. Ind Eng Chem Res 36:3453–3457

    Article  CAS  Google Scholar 

  45. Chen Y-C, Smirniotis P (2002) Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound. Ind Eng Chem Res 41:5958–5965

    Article  CAS  Google Scholar 

  46. Merouani S, Hamdaoui O, Saoudi F, Chiha M (2010) Sonochemical degradation of Rhodamine B in aqueous phase: effects of additives. Chem Eng J 158:550–557

    Article  CAS  Google Scholar 

  47. Duque FG, Petrier C, Pulgarin C, Penuela G, Torres-Palma RA (2011) Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultrason Sonochem 18:440–446

    Article  Google Scholar 

  48. Uddin HM, Nanzai B, Okitsu K (2016) Effects of Na2SO4 or NaCl on sonochemical degradation of phenolic compounds in an aqueous solution under Ar: positive and negative effects induced by the presence of salts. Ultrason Sonochem 28:144–149

    Article  CAS  Google Scholar 

  49. Okitsu K, Kawasaki K, Nanzai B, Takenaka N, Bandow H (2008) Effect of carbon tetrachloride on sonochemical decomposition of methyl orange in water. Chemosphere 71:36–42

    Article  CAS  Google Scholar 

  50. Weissler A, Cooper HW, Snyder S (1950) Chemical effect of ultrasonic waves: oxidation of potassium iodide solution by carbon tetrachloride. J Am Chem Soc 72:1769–1775

    Article  CAS  Google Scholar 

  51. Hua I, Hoffmann MR (1996) Kinetics and mechanism of the sonolytic degradation of CCl4: intermediates and byproducts. Environ Sci Technol 30:864–871

    Article  CAS  Google Scholar 

  52. Lide DR (ed) (2002) CRC handbook of chemistry and physics, 83rd edn. CRC Press, London, pp 9–75

    Google Scholar 

  53. Gültekin I, Tezcanli-Güyer G, Ince NH (2009) Sonochemical decay of C.I. Acid Orange 8: effects of CCl4 and t-butyl alcohol. Ultrason Sonochem 16:577–581

    Article  Google Scholar 

  54. Shriwas AK, Gogate PR (2011) Ultrasonic degradation of methyl parathion in aqueous solutions: intensification using additives and scale up aspects. Sep Purif Technol 79:1–7

    Article  CAS  Google Scholar 

  55. Golash N, Gogate PR (2012) Degradation of dichlorvos containing wastewaters using sonochemical reactors. Ultrason Sonochem 19:1051–1060

    Article  CAS  Google Scholar 

  56. Zhou R, Luo W, Zhu L, Chen F, Tang H (2007) Spectrophotometric determination of carbon tetrachloride via ultrasonic oxidation of iodide accelerated by dissolved carbon tetrachloride. Anal Chim Acta 597:295–299

    Article  CAS  Google Scholar 

  57. Suslick KS, Mdleleni MM, Ries JT (1997) Chemistry induced by hydrodynamic cavitation. J Am Chem Soc 119:9303–9304

    Article  CAS  Google Scholar 

  58. Ince NH, Gultekin I, Tezcanli-Guyer G (2009) Sonochemical destruction of nonylphenol: effects of pH and hydroxyl radical scavengers. J Hazard Mater 172:739–743

    Article  CAS  Google Scholar 

  59. Keck A, Gilbert E, Koster R (2002) Influence of particles on sonochemical reactions in aqueous solutions. Ultrasonics 40:661–665

    Article  CAS  Google Scholar 

  60. Iida Y, Kozuka T, Tuziuti T, Yasui K (2004) Sonochemically enhanced adsorption and degradation of methyl orange with activated aluminas. Ultrasonics 42:635–639

    Article  CAS  Google Scholar 

  61. Nakui H, Okitsu K, Maeda Y, Nishimura R (2007) Effect of coal ash on sonochemical degradation of phenol in water. Ultrason Sonochem 14:191–196

    Article  CAS  Google Scholar 

  62. Shimizu N, Ogino C, Dadjour MF, Murata T (2007) Sonocatalytic degradation of methylene blue with TiO2 pellets in water. Ultrason Sonochem 14:184–190

    Article  CAS  Google Scholar 

  63. He Y, Grieser F, Ashokkumar M (2011) The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions. Ultrason Sonochem 18:974–980

    Article  CAS  Google Scholar 

  64. He Y, Grieser F, Ashokkumar M (2011) Kinetics and mechanism for the sonophotocatalytic degradation of p-chlorobenzoic acid. J Phys Chem A 115:6582–6588

    Article  CAS  Google Scholar 

  65. Hung H-M, Hoffmann MR (1998) Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound. Environ Sci Technol 32:3011–3016

    Article  CAS  Google Scholar 

  66. Hung H-M, Ling FH, Hoffmann MR (2000) Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environ Sci Technol 34:1758–1763

    Article  CAS  Google Scholar 

  67. Okitsu K, Yoshioka Y, Tanabe S (2006) Effect of transition metal powder and low-energy ultrasound frequency on degradation rate of chlorinated hydrocarbons in water. Bunseki Kagaku 55:567–572

    Article  CAS  Google Scholar 

  68. Nanzai B, Okitsu K, Takenaka N, Bandow H, Tajima N, Maeda Y (2009) Effect of reaction vessel diameter on sonochemical efficiency and cavitation dynamics. Ultrason Sonochem 16:163–168

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Okitsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Okitsu, K., Nanzai, B., Thangavadivel, K. (2016). Sonochemical Degradation of Aromatic Compounds, Surfactants, and Dyes in Aqueous Solutions. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_57

Download citation

Publish with us

Policies and ethics