Skip to main content
Log in

Effects of initial concentration of LASs on the rates of sonochemical degradation and cavitation efficiency

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The effect of initial concentration of linear alkylbenzene sulfonate (LAS: p-octylbenzene sulfonate (LAS C8), p-nonylbenzene sulfonate (LAS C9), p-dodecylbenzene sulfonate (LAS C12)) on the rate of sonochemical degradation was investigated over a wide concentration range under Ar atmosphere by 200 kHz ultrasonic irradiation. The degradation rate of each LAS increased with increasing initial concentration of LAS and then started to decrease with the different behavior depending on the types of LASs. This result indicated that the cavitation efficiency was gradually changed by their concentrations and the optimum LAS concentrations for their effective degradation existed. The maximum degradation rates were observed at 250 μM of LAS C12, 1250 μM of LAS C9, and 2500 μM of LAS C8, respectively. These optimum concentrations were found to be about four to six times smaller than these critical micelle concentrations (CMCs). It was also found that the maximum degradation rates at the optimum concentrations were observed to be almost linearly correlated with their CMCs. Based on the obtained results, it could be suggested that the micelle formation occurs in the interfacial region of cavitation bubbles during rectified diffusion and this phenomenon reduces the cavitation efficiency. In addition, from the results of the rate of the sonochemical degradation of LASs and the yield of hydrogen peroxide, the existence of thermal gradient in the interfacial region of cavitation bubbles was also confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Moriwaki, Y. Takagi, M. Tanaka, K. Tsuruho, K. Okitsu, Y. Maeda, Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environ. Sci. Technol. 39, 3388–3392 (2005)

    Article  CAS  Google Scholar 

  2. J. Cheng, C.D. Vecitis, H. Park, B.T. Mader, M.R. Hoffmann, Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects. Environ. Sci. Technol. 42, 8057–8063 (2008)

    Article  CAS  Google Scholar 

  3. K. Okitsu, T. Suzuki, N. Takenaka, H. Bandow, R. Nishimura, Y. Maeda, Acoustic multibble cavitation in water: a new aspect of the effect of a rare gas atmosphere on bubble temperature and its relevance to sonochemistry. J. Phys. Chem. B 110, 20081–20084 (2006)

    Article  CAS  Google Scholar 

  4. W.B. McNamara III, Y.T. Didenko, K.S. Suslick, Pressure during sonoluminescence. J. Phys. Chem. B 107, 7303–7306 (2003)

    Article  Google Scholar 

  5. A.E. Alegria, Y. Lion, T. Kondo, P. Riesz, Sonolysis of aqueous surfactant solutions. Probing the interfacial region of cavitation bubbles by spin trapping. J. Phys. Chem. 93, 4908–4913 (1989)

    Article  CAS  Google Scholar 

  6. C.M. Krishna, T. Kondo, P. Riesz, Sonochemistry of alcohol–water mixtures: spin-trapping evidence for thermal decomposition and isotope-exchange reactions. J. Phys. Chem. 93, 5166–5172 (1989)

    Article  CAS  Google Scholar 

  7. B. Nanzai, K. Okitsu, N. Takenaka, H. Bandow, Y. Maeda, Sonochemical degradation of various monocyclic aromatic compounds: Relation between hydrophobicities of organic compounds and the decomposition rates. Ultrason. Sonochem. 15, 478–483 (2008)

    Article  CAS  Google Scholar 

  8. K. Hirai, Y. Nagata, Y. Maeda, Decomposition of chlorofluorocarbons and hydrofluorocarbons in water by ultrasonic irradiation. Ultrason. Sonochem. 3, S205–S207 (1996)

    Article  CAS  Google Scholar 

  9. B. Nanzai, K. Okitsu, N. Takenaka, H. Bandow, Sonochemical degradation of alkylbenzene sulfonate and kinetics analysis with a Langmuir type mechanism. J. Phys. Chem. C 113, 3735–3739 (2009)

    Google Scholar 

  10. L. Yang, J.F. Rathman, L.K. Weavers, Degradation of alkylbenzene sulfonates by pulsed ultrasound. J. Phys. Chem. B 109, 16203–16209 (2005)

    Article  CAS  Google Scholar 

  11. L. Yang, J.F. Rathman, L.K. Weavers, Sonochemical degradation of alkylbenzene sulfonate surfactant in aqueous mixtures. J. Phys. Chem. B 110, 18385–18391 (2006)

    Article  CAS  Google Scholar 

  12. B. Yim, H. Okuno, Y. Nagata, R. Nishimura, Y. Maeda, Sonolysis of surfactants in aqueous solutions: an accumulation of solute in the interfacial region of the cavitation bubbles. Ultrason. Sonochem. 9, 209–213 (2002)

    Article  CAS  Google Scholar 

  13. E. Manousaki, E. Psillakis, N. Kalogerakis, D. Mantzavinos, Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Res. 38, 3751–3759 (2004)

    Article  CAS  Google Scholar 

  14. M. Ashokkumar, R. Hall, P. Mulvaney, F. Grieser, Sonoluminescence from aqueous alcohol and surfactant solutions. J. Phys. Chem. B 101, 10845–10850 (1997)

    Article  CAS  Google Scholar 

  15. M. Ashokkumar, P. Mulvaney, F. Grieser, The effect of pH on multibubble sonoluminescence from aqueous solutions containing simple organic weak acids and bases. J. Am. Chem. Soc. 121, 7355–7359 (1999)

    Article  CAS  Google Scholar 

  16. J.Z. Sostaric, P. Riesz, Sonochemistry of surfactants in aqueous solutions: an EPR spin-trapping study. J. Am. Chem. Soc. 123, 11010–11019 (2001)

    Article  CAS  Google Scholar 

  17. J.Z. Sostaric, P. Riesz, Adsorption of surfactants at the gas/solution interface of cavitation bubbles: an ultrasound intensity-independent frequency effect in sonochemistry. J. Phys. Chem. B 106, 12537–12548 (2002)

    Article  CAS  Google Scholar 

  18. G.Y. Pee, J.F. Rathman, L.K. Weavers, Effects of surface active properties on the cavitational degradation of surfactant contaminants. Ing. Eng. Chem. Res. 43, 5049–5056 (2004)

    Article  CAS  Google Scholar 

  19. B. Nanzai, K. Okitsu, N. Takenaka, H. Bandow, N. Tajima, Y. Maeda, Effect of reaction vessel diameter on sonochemical efficiency and cavitation dynamics. Ultrason. Sonochem. 16, 163–168 (2009)

    Article  CAS  Google Scholar 

  20. K. Okitsu, B. Nanzai, K. Kawasaki, N. Takenaka, H. Bandow, Sonochemical decomposition of organic acids in aqueous solution: Understanding of molecular behavior during cavitation by the analysis of a heterogeneous kinetics model. Ultrason. Sonochem. 16, 155–162 (2009)

    Article  CAS  Google Scholar 

  21. A. Henglein, C. Kormann, Scavenging of OH radicals produced in the sonolysis of water. Int. Radiat. Biol. 48, 251–258 (1985)

    Article  CAS  Google Scholar 

  22. M. Manabe, H. Kawamura, A. Yamashita, S. Tokunaga, Effect of alkanols on intermicellar concentration and on ionization of micelles. J. Colloid Interface Sci. 115, 147–154 (1987)

    Article  CAS  Google Scholar 

  23. W. Grieß, Über die beziehungen zwischen der konstitution und den eigenschaften von alkylbenzolsulfonaten mit jeweils einer geraden oder verzweigten alkylkette bis zu 18 kohlenstoff-atomen I. Fette. Seifen. Anstr. 57, 24–32 (1955)

    Article  Google Scholar 

  24. H. Destaillats, H.M. Hung, M.R. Hoffmann, Degradation of alkylphenol ethoxylate surfactants in water with ultrasonic irradiation. Environ. Sci. Technol. 34, 311–317 (2000)

    Article  CAS  Google Scholar 

  25. M. Ashokkumar, J. Lee, S. Kentish, F. Grieser, Bubbles in an acoustic field: an overview. Ultrason. Sonochem. 14, 470–475 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the Sasakawa Scientific Research Grant from The Japan Science Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Okitsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanzai, B., Okitsu, K., Takenaka, N. et al. Effects of initial concentration of LASs on the rates of sonochemical degradation and cavitation efficiency. Res Chem Intermed 35, 841 (2009). https://doi.org/10.1007/s11164-009-0088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11164-009-0088-7

Keywords

Navigation