Skip to main content

Less Used Orthopaedic Implants

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

Orthopaedic trauma implants and fixation systems have evolved over the years. In this process, some have performed well while others did not. We look at the implants which are less used in this chapter. Performance of an implant depends on various factors, and we look at these factors and list those implants which did not perform as expected with the possible reasons. We briefly go through the evolution of fixation systems like plating, nailing, and external fixators to understand some critical concepts and the reasons for less usage of certain implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrzejowski P, Giannoudis PV. The “diamond concept” for long bone non-union management. J Orthop Traumatol. 2019. https://doi.org/10.1186/s10195-019-0528-0.

  2. Lane WA. Some remarks on the treatment of fractures. BMJ. 1895;1:861–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lambotte A. Technique et indication des prothèses dans le traitement des fractures. Presse Med. 1909;17:321.

    Google Scholar 

  4. Sherman WO. Vanadium steel bone plates and screws. Surg Gynecol Obstet. 1912;14:629–34.

    Google Scholar 

  5. Huber W. Historical remarks on Martin Kirschner and the development of the Kirschner (K)-wire. Indian J Plast Surg. 2008;41(1):89–92. https://doi.org/10.4103/0970-0358.41122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uhthoff HK, Poitras P, Backman DS. Internal plate fixation of fractures: short history and recent developments. J Orthop Sci. 2006;11(2):118–26. https://doi.org/10.1007/s00776-005-0984-7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eggers GWN. Internal contact splint. J Bone Joint Surg Am. 1948;30:40–52.

    Article  Google Scholar 

  8. Danis R. Théorie et pratique de l’ostéosynthèse. Paris: Masson; 1949.

    Google Scholar 

  9. Bagby GW, Janes JM. The effect of compression on the rate of fracture healing using a special plate. Am J Surg. 1958;95:761–71.

    Article  CAS  PubMed  Google Scholar 

  10. Müller ME, Allgöwer M, Willenegger H. Compression fixation with plates. In: Technique of internal fixation of fractures. Berlin: Springer; 1965. p. 47–51.

    Chapter  Google Scholar 

  11. Gautier E, Perren SM. Limited Contact Dynamic Compression Plate (LC-DCP) – biomechanical research as basis to new plate design. Orthopade. 1992;21(1):11–23.

    CAS  PubMed  Google Scholar 

  12. Field HJR, Hearn TC, Caldwell B. Bone plate fixation: an evaluation of interface contact area and force of the dynamic compression plate (DCP) and the limited contact-dynamic compression plate (LC-DCP) applied to cadaveric bone. J Orthop Trauma. 1997;11:368–73.

    Article  CAS  PubMed  Google Scholar 

  13. Jain R, Podworny N, Hupel TM, Weinberg J, Schemitsch EH. Influence of plate design on cortical bone perfusion and fracture healing in canine segmental tibial fractures. J Orthop Trauma. 1999;13:178–86.

    Article  CAS  PubMed  Google Scholar 

  14. Gerber C, Mast JW, Ganz R. Biological internal fixation of fractures. Arch Orthop Trauma Surg. 1990;109:295–303.

    Article  CAS  PubMed  Google Scholar 

  15. Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br. 1985;67:650–5.

    Article  CAS  PubMed  Google Scholar 

  16. Kubiak EN, Fulkerson E, Strauss E, Egol KA. The evolution of locked plates. J Bone Joint Surg. 2006;88(suppl_4):189–200. https://doi.org/10.2106/JBJS.F.00703.

    Article  PubMed  Google Scholar 

  17. Giannoudis PV, Giannoudis VP. Far cortical locking and active plating concepts: new revolutions of fracture fixation in the waiting? Injury. 2017;48(12):2615–8. https://doi.org/10.1016/j.injury.2017.11.030.

    Article  PubMed  Google Scholar 

  18. Meccariello L, Bisaccia M, Caraffa A, et al. From the down to modern era: the history of the nailing. Open Access. 2016;3(2):10–7.

    Google Scholar 

  19. Smith-Petersen MN. Treatment of fractures of the neck of the femur by internal fixation. Surg Gyn Obstet. 1937;64:287.

    Google Scholar 

  20. Kuntscher GB. The Kuntscher method of intramedullary fixation. J Bone Joint Surg Am. 1958;40-A:17–26.

    Article  CAS  PubMed  Google Scholar 

  21. Kempf MD, Grosse A, Beck MD. Closed locked intramedullary nailing. J Bone Joint Surg Am. 1995;5:67–6.

    Google Scholar 

  22. Scaglietti O, Marchetti PG, Bartolozzi P. I chiodivibranti. Arch Putti ChirOrgani Mov. 1985;35:157–60.

    CAS  Google Scholar 

  23. Russell TA, Taylor JC, LaVelle DG. Mechanical characterization of femoral interlocking intramedullary nailing systems. J Orthop Trauma. 1991;5:332–40.

    Article  CAS  PubMed  Google Scholar 

  24. Taylor JC, Russell TA, Lavelle DG. Clinical results of 100 femoral shaft fractures treated with the Russell-Taylor interlocking nail systems [AAOS. CA]. Orthop Trans. 1987;3:491.

    Google Scholar 

  25. Brumback RJ, Uwagie-Ero S, Lakatos RP. Intramedullary nailing of femoral shaft fractures. Part I and II: fracture-healing with static interlocking fixation. J Bone Joint Surg Am. 1988;70:1453–62.

    Article  CAS  PubMed  Google Scholar 

  26. Krettek C, Miclau T, Schandelmaier P. The mechanical effect of blocking screws (Poller screws) in stabilizing tibia fractures with short proximal or distal fragments after insertion of small diameter intramedullary nails. J Orthop Trauma. 1999;13:550–3.

    Article  CAS  PubMed  Google Scholar 

  27. Russell TA, Mir HR, Stoneback J. Avoidance of malreduction of proximal femoral shaft fractures with the use of a minimally invasive nail insertion technique (MINIT). J Orthop Trauma. 2008;22:391.

    Article  PubMed  Google Scholar 

  28. Putame G, Pascoletti G, Terzini M, Zanetti EM, Audenino AL. Mechanical behavior of elastic self-locking nails for intramedullary fracture fixation: a numerical analysis of innovative nail designs. Front Bioeng Biotechnol. 2020;8:557. https://doi.org/10.3389/fbioe.2020.00557.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Malgaigne JF. Traité des fractures et des luxations. Paris: J B Baillière; 1847. p. 771–2.

    Google Scholar 

  30. Rigaud P. Nouvelappareil pour la fracture de l’olecrane. Revue Med Chir Paris. 1850;7:50–1.

    Google Scholar 

  31. Cucel LR, Rigaud R. Des vis metalliquesenfoncees dans le tissu des os pour le traitement de certaines fractures. Rev Med Chir. 1850;8:113.

    Google Scholar 

  32. Carrell WB. End results in 100 fractures treated by internal removable fixation. J Bone Joint Surg. 1936;18:408–16.

    Google Scholar 

  33. Carrell WB, Girard PM. Removable internal fixation in fractures. JAMA. 1931;96:670–3.

    Article  Google Scholar 

  34. Hernigou. Authorities and foundation of an orthopaedic school in Germany in the nineteenth century: part I part I: Conrad Johann Martin Langenbeck; Georg Friedrich Louis Stromeyer; Bernhard Rudolf Conrad von Langenbeck; Johann Friedrich August von Esmarch. Int Orthop. 2016;40(3):633–40.

    Article  PubMed  Google Scholar 

  35. Hernigou P. Fathers of orthopaedics in Germany (eighteenth and early nineteenth centuries): Lorenz Heister in Helmsted; Johann Friedrich Dieffenbach in Berlin; Heine and family in Würzburg. Int Orthop. 2016;40(2):425–31.

    Article  PubMed  Google Scholar 

  36. Parkhill C. Further observations regarding the use of the boneclamp in ununited fractures, fractures with malunion and recent fractures with a tendency to displacement. Ann Surg. 1898;27:553–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Parkhill C. A new apparatus for the fixation of bones after resection and in fractures with a tendency to displacement. Trans Am Surg Assoc. 1897;15:251–6.

    Google Scholar 

  38. Lambotte A. L’interventionoperatoire dans les fractures recentes et anciennes. Bruxelles: Henri Larnertin; 1907.

    Google Scholar 

  39. Lambotte A. ChirurgieoperatoireDes fractures. Paris: Masson; 1913.

    Google Scholar 

  40. Hey-Groves EW. On the treatment of compound and comminuted fractures. Br Med J. 1913;2:1079–80.

    Google Scholar 

  41. Hey-Groves EW. On the application of the principle of extension to comminuted fractures of the long bone, with special reference to gunshot injuries. Br J Surg. 1915;3:429–43.

    Google Scholar 

  42. Hey-Groves EW. On modern methods of treating fractures. Bristol: John Wright and Sons; 1916.

    Google Scholar 

  43. Freeman L. The treatment of oblique fractures of the tibia and other bones by means of external clamps inserted through small openings in the skin. Trans Am Surg Assoc. 1911;28:70–93.

    Google Scholar 

  44. Lilienthal H, RE H. Safety in the operative fixation of infected fractures of long bones. Trans Am Surg Assoc. 1912;30(467–476):674–86.

    Google Scholar 

  45. Wynn-Jones CH. Wrinkle corner: a simple external fixation method using wire and bone cement. Injury. 1978;9:329–30.

    Article  CAS  PubMed  Google Scholar 

  46. Judet R, Judet J. Remarques à propos des fixateursexternes dans le traitement des fractures ouvertes de la jambe. Mem Acad Chir Paris. 1958;84:288.

    Google Scholar 

  47. Taylor AR. Wrinkle corner: external fixation of fractures: a simple method. Injury. 1980;12:258–9.

    Article  CAS  PubMed  Google Scholar 

  48. Hoffmann. Osteotaxis: osteosyntheseexterne par fisches et rotules. Acta Chir Scand. 1954;107:72–80.

    Google Scholar 

  49. Hoffmann R. Rotules à os pour la réductiondirigéenonsanglante des fractures (osteotaxis). Helv Med Acta. 1938;5:844.

    Google Scholar 

  50. Anderson R. Castless ambulatory method of treating fractures. J Int Call Surg. 1942;5:458–62.

    Google Scholar 

  51. Anderson R. A self-aligning method of treating fractures of the long bones. J Int Coll Surg. 1944;7:1–8.

    Google Scholar 

  52. Vidal J. Notre experience du fixateurexterned’Hoffmann. Montpellier Chir. 1968;14:451–60.

    Google Scholar 

  53. Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop. 1990;250:8–26.

    Article  Google Scholar 

  54. Ilizarov S, Rozbruch RS. Limb lengthening and reconstruction surgery. New York: Informa Healthcare; 2007.

    Google Scholar 

  55. Seenappa HK, Shukla MK, Narasimhaiah M. Management of complex long bone nonunions using limb reconstruction system. Indian J Orthop. 2013;47(6):602–7. https://doi.org/10.4103/0019-5413.121590.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rozbruch RS, Fragomen AT, Ilizarov S. Correction of Tibial deformity with use of the Ilizarov-Taylor spatial frame. J Joint Bone Surg. 2006;8(4):156–74. https://doi.org/10.2106/JBJS.F.00745.

    Article  Google Scholar 

  57. Chaudhary M. Taylor spatial frame-software-controlled fixator for deformity correction-the early Indian experience. Indian J Orthop. 2007;41(2):169. https://doi.org/10.4103/0019-5413.32052.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kohler FC, Schenk P, Nies T, et al. Fibula nail versus locking plate fixation – a biomechanical study. JCM. 2023;12(2):698. https://doi.org/10.3390/jcm12020698.

    Article  PubMed  PubMed Central  Google Scholar 

  59. King PR, Lamberts RP. Management of clavicle shaft fractures with intramedullary devices: a narrative review. Expert Rev Med Dev. 2020;17(8):807–15. https://doi.org/10.1080/17434440.2020.1793668.

    Article  CAS  Google Scholar 

  60. Dehghan N, Schemitsch EH. Intramedullary nail fixation of non-traditional fractures: clavicle, forearm, fibula. Injury. 2017;48:S41–6. https://doi.org/10.1016/j.injury.2017.04.018.

    Article  PubMed  Google Scholar 

  61. Capelli RM, Galmarini V, Molinari GP, et al. The Fixion expansion nail in the surgical treatment of diaphyseal fractures of the humerus and tibia: our experience. Chir Organi Mov. 2008;466(5):1225–31. https://doi.org/10.1007/s11999-008-0169-8.

    Article  Google Scholar 

  62. Lepore S, Capuano N, Lepore L, Romano G. Preliminary clinical and radiographic results with the Fixion intramedullary nail: an inflatable self-locking system for long bone fractures. J Orthopaed Traumatol. 2000;3:135–40.

    Article  Google Scholar 

  63. Maher SA, Meyers K, Borens O, et al. Biomechanical evaluation of an expandable nail for the fixation of midshaft fractures. J Trauma. 2007;63(1):103–7.

    PubMed  Google Scholar 

  64. Smith WR, Ziran B, Agudelo JF, et al. Expandable intramedullary nailing for tibial and femoral fractures: a preliminary analysis of perioperative complications. J Orthop Trauma. 2006;20(5):310–4.

    Article  PubMed  Google Scholar 

  65. Ozturk H, Unsaldi T, Oztemur Z, Bulut O, Korkmaz M, Demirel H. Extreme complications of Fixion nail in treatment of long bone fractures. Arch Orthop Trauma Surg. 2008;128:301–6.

    Article  PubMed  Google Scholar 

  66. Siegel HJ, Sessions W, Casillas MA. Stabilization of pathologic long bone fractures with the Fixion expandable nail. Orthopedics. 2008;31:2.

    Google Scholar 

  67. Lepore L, Lepore S, MaVulli N. Intramedullary nailing of the femur with an inflatable self-locking nail: comparison with locked nailing. J Orthop Sci. 2003;8:796–801.

    Article  PubMed  Google Scholar 

  68. Phillips AW, Patel AD, Donell ST, C W. Explosion of Fixion humeral nail during cremation: novel ‘complication’ with a novel implant. Injury Extra. 2006;37(150):357–8.

    Article  Google Scholar 

  69. Russo R, Cautiero F, Ciccarelli M, Vernaglia LL. Reconstruction of unstable, complex proximal humeral fractures with the da Vinci cage: surgical technique and outcome at 2 to 6 years. J Shoulder Elb Surg. 2013;22(3):422–31. https://doi.org/10.1016/j.jse.2012.04.010.

    Article  Google Scholar 

  70. Hudgens JL, Jang J, Aziz K, Best MJ, Srikumaran U. Three- and 4-part proximal humeral fracture fixation with an intramedullary cage: 1-year clinical and radiographic outcomes. J Shoulder Elb Surg. 2019;28(6S):S131–7. https://doi.org/10.1016/j.jse.2019.05.002.

    Article  Google Scholar 

  71. Macy J. Fixation of a proximal humeral fracture using a novel intramedullary cage construct following a failed conservative treatment. Case Rep Orthop. 2017;2017:1–4. https://doi.org/10.1155/2017/4347161.

    Article  Google Scholar 

  72. Kavuri V, Bowden B, Kumar N, Cerynik D. Complications associated with locking plate of proximal Humerus fractures. Indian J Orthop. 2018;52(2):108–16. https://doi.org/10.4103/ortho.IJOrtho_243_17.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Roerdink WH, Aalsma AMM, Nijenbanning G, Walsum ADP. The dynamic locking blade plate, a new implant for intracapsular hip fractures: biomechanical comparison with the sliding hip screw and Twin Hook. Injury. 2009;40(3):283–7. https://doi.org/10.1016/j.injury.2008.08.041.

    Article  CAS  PubMed  Google Scholar 

  74. van Walsum ADP, Vroemen J, Janzing HMJ, Winkelhorst T, Kalsbeek J, Roerdink WH. Low failure rate by means of DLBP fixation of undisplaced femoral neck fractures. Eur J Trauma Emerg Surg. 2017;43(4):475–80. https://doi.org/10.1007/s00068-016-0659-4.

    Article  PubMed  Google Scholar 

  75. Lee H, Lee SH, Lim W, Jo S, Jo S. Comparison of helical blade systems for osteoporotic intertrochanteric fractures using biomechanical analysis and clinical assessments. Medicina. 2022;58:12. https://doi.org/10.3390/medicina58121699.

    Article  Google Scholar 

  76. Nayar SK, Ranjit S, Adebayo O, Hassan SM, Hambidge J. Implant fracture of the TFNA femoral nail. J Clin Orthop Trauma. 2021;22:101598. https://doi.org/10.1016/j.jcot.2021.101598. PMID: 34603956; PMCID: PMC8473538.

  77. Li P, Zhang Z, Zhou F, Lv Y, Guo Y, Tian Y. Characteristics of intramedullary nail breakage in pertrochanteric femur fractures: a summary of 70 cases. J Orthop Surg Res. 2021;16(1):676. https://doi.org/10.1186/s13018-021-02826-3.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Olsson O, Ceder L, Lunsjö K, Hauggaard A. Extracapsular hip fractures: fixation with a twin hook or a lag screw? Int Orthop. 2000;24(5):249–55. https://doi.org/10.1007/s002640000156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Olséen P, Jonsson B, Ceder L. The Hansson Twin Hook is adequate for fixation of trochanteric fractures: 2 fixation failures in a series of 157 prospectively followed patients. Acta Orthop. 2008;79(5):602–8. https://doi.org/10.1080/17453670810016605.

    Article  PubMed  Google Scholar 

  80. Paulsson J, Stig JC, Olsson O. Comparison and analysis of reoperations in two different treatment protocols for trochanteric hip fractures – postoperative technical complications with dynamic hip screw, intramedullary nail and Medoff sliding plate. BMC Musculoskelet Disord. 2017;18:1. https://doi.org/10.1186/s12891-017-1723-x.

    Article  Google Scholar 

  81. Fan B, Xiao H, Wu P, Du Y. Comparison of curative effect between PFNA and PCCP in the treatment of femoral intertrochanteric fractures. Li W, ed. Emerg Med Int. 2022;2022:1–6. https://doi.org/10.1155/2022/5957025.

    Article  Google Scholar 

  82. Bottlang M, Feist F. Biomechanics of far cortical locking. J Orthop Trauma. 2011;1(Suppl 1):S21. https://doi.org/10.1097/BOT.0b013e318207885b.

    Article  Google Scholar 

  83. Henschel J, Tsai S, Fitzpatrick DC, Marsh JL, Madey SM, Bottlang M. Comparison of 4 methods for dynamization of locking plates: differences in the amount and type of fracture motion. J Orthop Trauma. 2017;31(10):531–7. https://doi.org/10.1097/BOT.0000000000000879.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pires RE, Santana EO Jr, Santos LE, Giordano V, Balbachevsky D, Dos Reis FB. Failure of fixation of trochanteric femur fractures: clinical recommendations for avoiding Z-effect and reverse Z-effect type complications. Patient Saf Surg. 2011;5:17. https://doi.org/10.1186/1754-9493-5-17.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rose DM, Smith TO, Nielsen D, Hing CB. Expandable intramedullary nails for humeral fractures: a systematic review of clinical and radiological outcomes. Eur J Orthop Surg Traumatol. 2013;23(1):1–11. https://doi.org/10.1007/s00590-011-0908-5.

    Article  PubMed  Google Scholar 

  86. Franke J, Hohendorff B, Alt V, Thormann U, Schnettler R. Suprapatellar nailing of tibial fractures-indications and technique. Injury. 2016;47(2):495–501. https://doi.org/10.1016/j.injury.2015.10.023.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kambhampati, S.B.S., Senthilvelan, R., Chodavarapu, M.N.S. (2023). Less Used Orthopaedic Implants. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics