Skip to main content

Allied Devices and Their Influence on Spinal Implants

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology
  • 22 Accesses

Abstract

The improvement and evolution of allied devices in spinal surgery have led to improvement of spinal surgery implantology. Intraoperative images with fluoroscopy, navigation based on preoperative computed tomography, cone-beam CT-based navigation, O-arm, and intraoperative tomography provide improved surgical guidance. Navigation systems provide improved accuracy of more than 90% in the placement of pedicle screws. Tubular retraction systems coupled to pedicle screws allow their percutaneous insertion by minimally invasive spine surgery (MISS) techniques. They improve surgical access, allowing the insertion of intervertebral cages securely. Retraction systems offer stable retraction during surgery. The current systems are radiolucent, do not damage the tissue, and allow a minimally invasive approach for the anterior, lateral, and posterior parts of the spine. Intraoperative neurophysiological monitoring (e.g., transcranial motor-evoked potential and evoked electromyography) shows high sensitivity in detecting damage to the motor nerves and is very useful in spinal deformity surgery and in MISS. Laminar flow and high-efficiency particulate air (HEPA) filters have reduced microorganisms in the operating room. Modern surgical tables are versatile and radiolucent and allow the patient to be positioned, reducing the risk of pressure injuries. In addition, the use of microscope, endoscope, and thoracoscope in spinal surgery has improved the precision of surgery. Zoom and digital image enhancement have been crucial for minimally invasive surgery, achieving almost ambulatory spinal surgery. Thus, allied devices have improved the accuracy of implant placement and promoted the development of minimally invasive surgery, in turn allowing the evolution of modern implantology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang A, Hu SS, Endres N, Bradford DS. Risk factors for infection after spinal surgery. Spine. 2005;30:1460–5. https://doi.org/10.1097/01.brs.0000166532.58227.4f.

    Article  PubMed  Google Scholar 

  2. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 2012;21:247–55. https://doi.org/10.1007/s00586-011-2011-3.

    Article  PubMed  Google Scholar 

  3. Perdomo-Pantoja A, Ishida W, Zygourakis C, Holmes C, Iyer RR, Cottrill E, et al. Accuracy of current techniques for placement of pedicle screws in the spine: a comprehensive systematic review and meta-analysis of 51,161 screws. World Neurosurg. 2019;126:664–678.e3. https://doi.org/10.1016/j.wneu.2019.02.217.

    Article  PubMed  Google Scholar 

  4. Orief T, Alfawareh M, Halawani M, Attia W, Almusrea K. Accuracy of percutaneous pedicle screw insertion in spinal fixation of traumatic thoracic and lumbar spine fractures. Surg Neurol Int. 2018;9:78. https://doi.org/10.4103/sni.sni_5_18.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sumiya S, Numano F, Ogawa T, Yoshii T, Okawa A, Komori H. Accuracy of pedicle screw insertion for unilateral open transforaminal lumbar interbody fusion: a side-by-side comparison of percutaneous and conventional open techniques in the same patients. BMC Musculoskelet Disord. 2020;21:168. https://doi.org/10.1186/s12891-020-3180-1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Soriano-Sánchez JA, Ortega-Porcayo LA, Gutiérrez-Partida CF, Ramírez-Barrios LR, Ortíz-Leyva RU, Rodríguez-García M, et al. Fluoroscopy-guided pedicle screw accuracy with a mini-open approach: a tomographic evaluation of 470 screws in 125 patients. Int J Spine Surg. 2015;9:54. https://doi.org/10.14444/2054.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chung N-S, Lee H-D, Jeon C-H. Accuracy of the lateral cage placement under intraoperative C-arm fluoroscopy in oblique lateral interbody fusion. J Orthop Sci. 2018;23:918–22. https://doi.org/10.1016/j.jos.2018.07.010.

    Article  PubMed  Google Scholar 

  8. Holly LT, Foley KT. Intraoperative spinal navigation. Spine. 2003;28:S54–61. https://doi.org/10.1097/01.BRS.0000076899.78522.D9.

    Article  PubMed  Google Scholar 

  9. Puvanesarajah V, Liauw JA, Lo S-F, Lina IA, Witham TF. Techniques and accuracy of thoracolumbar pedicle screw placement. World J Orthop. 2014;5:112–23. https://doi.org/10.5312/wjo.v5.i2.112.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schlenzka D, Laine T, Lund T. Computer-assisted spine surgery. Eur Spine J. 2000;9(Suppl 1):S57–64. https://doi.org/10.1007/pl00010023.

    Article  PubMed  Google Scholar 

  11. Gebhard F, Weidner A, Liener UC, Stöckle U, Arand M. Navigation at the spine. Injury. 2004;35(Suppl 1):S-A35–45. https://doi.org/10.1016/j.injury.2004.05.009.

    Article  Google Scholar 

  12. Nottmeier EW, Crosby TL. Timing of paired points and surface matching registration in three-dimensional (3D) image-guided spinal surgery. J Spinal Disord Tech. 2007;20:268–70. https://doi.org/10.1097/01.bsd.0000211282.06519.ab.

    Article  PubMed  Google Scholar 

  13. Tian N-F, Xu H-Z. Image-guided pedicle screw insertion accuracy: a meta-analysis. Int Orthop. 2009;33:895–903. https://doi.org/10.1007/s00264-009-0792-3.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Karhade AV, Vasudeva VS, Pompeu YA, Lu Y. Image guided spine surgery: available technology and future potential. Austin Neurosurg Open Access. 2016;3:1043.

    Google Scholar 

  15. Holly LT. Image-guided spinal surgery. Int J Med Robot. 2006;2:7–15. https://doi.org/10.1002/rcs.69.

    Article  PubMed  Google Scholar 

  16. Smith ZA, Sugimoto K, Lawton CD, Fessler RG. Incidence of lumbar spine pedicle breach after percutaneous screw fixation: a radiographic evaluation of 601 screws in 151 patients. J Spinal Disord Tech. 2014;27:358–63. https://doi.org/10.1097/BSD.0b013e31826226cb.

    Article  PubMed  Google Scholar 

  17. Vasudeva V, Moses Z, Cole T, Gologorsky Y, Lu Y. Chapter 14 – image guidance for spine surgery. In: Golby AJ, editor. Image-guided neurosurgery. Boston: Academic; 2015. p. 325–64. https://doi.org/10.1016/B978-0-12-800870-6.00014-5.

    Chapter  Google Scholar 

  18. Feng W, Wang W, Chen S, Wu K, Wang H. O-arm navigation versus C-arm guidance for pedicle screw placement in spine surgery: a systematic review and meta-analysis. Int Orthop. 2020;44:919–26. https://doi.org/10.1007/s00264-019-04470-3.

    Article  PubMed  Google Scholar 

  19. Verma SK, Singh PK, Agrawal D, Sinha S, Gupta D, Satyarthee GD, et al. O-arm with navigation versus C-arm: a review of screw placement over 3 years at a major trauma center. Br J Neurosurg. 2016;30:658–61. https://doi.org/10.1080/02688697.2016.1206179.

    Article  CAS  PubMed  Google Scholar 

  20. Shree Kumar D, Ampar N, Wee LL. Accuracy and reliability of spinal navigation: an analysis of over 1000 pedicle screws. J Orthop. 2020;18:197–203. https://doi.org/10.1016/j.jor.2019.10.002.

    Article  PubMed  Google Scholar 

  21. Waschke A, Walter J, Duenisch P, Reichart R, Kalff R, Ewald C. CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J. 2013;22:654–60. https://doi.org/10.1007/s00586-012-2509-3.

    Article  PubMed  Google Scholar 

  22. Uhl E, Zausinger S, Morhard D, Heigl T, Scheder B, Rachinger W, et al. Intraoperative computed tomography with integrated navigation system in a multidisciplinary operating suite. Neurosurgery. 2009;64:231–9; discussion 239–40. https://doi.org/10.1227/01.NEU.0000340785.51492.B5.

  23. Ahmed AK, Zygourakis CC, Kalb S, Zhu AM, Molina CA, Jiang B, et al. First spine surgery utilizing real-time image-guided robotic assistance. Comput Assist Surg (Abingdon). 2019;24:13–7. https://doi.org/10.1080/24699322.2018.1542029.

    Article  PubMed  Google Scholar 

  24. Zhang Q, Han X-G, Xu Y-F, Fan M-X, Zhao J-W, Liu Y-J, et al. Robotic navigation during spine surgery. Expert Rev Med Devices. 2020;17:27–32. https://doi.org/10.1080/17434440.2020.1699405.

    Article  CAS  PubMed  Google Scholar 

  25. Fan Y, Du J, Zhang J, Liu S, Xue X, Huang Y, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit. 2017;23:5960–8. https://doi.org/10.12659/msm.905713.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu L, Chen X, Margalit A, Peng H, Qiu G, Qian W. Robot-assisted vs freehand pedicle screw fixation in spine surgery – a systematic review and a meta-analysis of comparative studies. Int J Med Robot. 2018;14:e1892. https://doi.org/10.1002/rcs.1892.

    Article  PubMed  Google Scholar 

  27. Gao S, Lv Z, Fang H. Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. Eur Spine J. 2018;27:921–30. https://doi.org/10.1007/s00586-017-5333-y.

    Article  PubMed  Google Scholar 

  28. Fan M, Liu Y, He D, Han X, Zhao J, Duan F, et al. Improved accuracy of cervical spinal surgery with robot-assisted screw insertion: a prospective, randomized, controlled study. Spine. 2020;45:285–91. https://doi.org/10.1097/BRS.0000000000003258.

    Article  PubMed  Google Scholar 

  29. Kim D-Y, Lee S-H, Chung SK, Lee H-Y. Comparison of multifidus muscle atrophy and trunk extension muscle strength. Spine. 2005;30:123–9. https://doi.org/10.1097/01.brs.0000148999.21492.53.

    Article  PubMed  Google Scholar 

  30. Foley KT, Gupta SK, Justis JR, Sherman MC. Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus. 2001;10:E10. https://doi.org/10.3171/foc.2001.10.4.11.

    Article  CAS  PubMed  Google Scholar 

  31. Mobbs RJ, Phan K. History of retractor technologies for percutaneous pedicle screw fixation systems. Orthop Surg. 2016;8:3–10. https://doi.org/10.1111/os.12216.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dunn C, Faloon M, Milman E, Pourtaheri S, Sinah K, Hwang K, et al. Accuracy and safety of percutaneous lumbosacral pedicle screw placement using dual-planar intraoperative fluoroscopy. Asian Spine J. 2018;12:238–45. https://doi.org/10.4184/asj.2018.12.2.238.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Härtl R. 1.3 The four pillars of minimally invasive spine surgery. In: Korge RHA, editor. Minimally invasive spine surgery: techniques, evidence, and controversies. Thieme; 2012. p. 23–49.

    Google Scholar 

  34. Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–43. https://doi.org/10.1016/j.spinee.2005.08.012.

    Article  PubMed  Google Scholar 

  35. Walker CT, Farber SH, Cole TS, Xu DS, Godzik J, Whiting AC, et al. Complications for minimally invasive lateral interbody arthrodesis: a systematic review and meta-analysis comparing prepsoas and transpsoas approaches. J Neurosurg Spine. 2019;1–15. https://doi.org/10.3171/2018.9.SPINE18800.

  36. Hilton DL Jr. Minimally invasive tubular access for posterior cervical foraminotomy with three-dimensional microscopic visualization and localization with anterior/posterior imaging. Spine J. 2007;7:154–8. https://doi.org/10.1016/j.spinee.2006.03.007.

    Article  PubMed  Google Scholar 

  37. Seex KA. An anterior cervical retractor utilizing a novel principle. J Neurosurg Spine. 2010;12:547–51. https://doi.org/10.3171/2009.9.SPINE0955.

    Article  PubMed  Google Scholar 

  38. Kossmann T, Jacobi D, Trentz O. The use of a retractor system (SynFrame) for open, minimal invasive reconstruction of the anterior column of the thoracic and lumbar spine. Eur Spine J. 2001;10:396–402. https://doi.org/10.1007/s005860100330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Phan K, Mobbs RJ. Oblique lumbar interbody fusion for revision of non-union following prior posterior surgery: a case report. Orthop Surg. 2015;7:364–7. https://doi.org/10.1111/os.12204.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vaidya R, Sethi A, Lee A, Bartol S, Onwudiwe N, Aebi M. Posterior lumbar spinal fusion and instrumentation in morbidly obese patients using the Synframe retractor system: technical note. Eur Spine J. 2012;21:2626–32. https://doi.org/10.1007/s00586-012-2321-0.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shilian P, Zada G, Kim AC, Gonzalez AA. Overview of intraoperative neurophysiological monitoring during spine surgery. J Clin Neurophysiol. 2016;33:333–9. https://doi.org/10.1097/WNP.0000000000000132.

    Article  PubMed  Google Scholar 

  42. Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, et al. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials*. J Clin Neurophysiol. 2012;29:101–8. https://doi.org/10.1097/WNP.0b013e31824a397e.

    Article  PubMed  Google Scholar 

  43. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96:6–11. https://doi.org/10.1016/0013-4694(94)00235-d.

    Article  CAS  PubMed  Google Scholar 

  44. Quiñones-Hinojosa A, Lyon R, Zada G, Lamborn KR, Gupta N, Parsa AT, et al. Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery. 2005;56:982–93; discussion 982–93. https://www.ncbi.nlm.nih.gov/pubmed/15854246

  45. Lieberman JA, Lyon R, Feiner J, Hu SS, Berven SH. The efficacy of motor evoked potentials in fixed sagittal imbalance deformity correction surgery. Spine. 2008;33:E414–24. https://doi.org/10.1097/BRS.0b013e318175c292.

    Article  PubMed  Google Scholar 

  46. Maguire J, Wallace S, Madiga R, Leppanen R, Draper V. Evaluation of intrapedicular screw position using intraoperative evoked electromyography. Spine. 1995;20:1068–74. https://doi.org/10.1097/00007632-199505000-00015.

    Article  CAS  PubMed  Google Scholar 

  47. Kaliya-Perumal A-K, Charng J-R, Niu C-C, Tsai T-T, Lai P-L, Chen L-H, et al. Intraoperative electromyographic monitoring to optimize safe lumbar pedicle screw placement – a retrospective analysis. BMC Musculoskelet Disord. 2017;18:229. https://doi.org/10.1186/s12891-017-1594-1.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee C-H, Kim H-W, Kim HR, Lee C-Y, Kim J-H, Sala F. Can triggered electromyography thresholds assure accurate pedicle screw placements? A systematic review and meta-analysis of diagnostic test accuracy. Clin Neurophysiol. 2015;126:2019–25. https://doi.org/10.1016/j.clinph.2014.11.026.

    Article  PubMed  Google Scholar 

  49. Ahmadian A, Deukmedjian AR, Abel N, Dakwar E, Uribe JS. Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization. J Neurosurg Spine. 2013;18:289–97. https://doi.org/10.3171/2012.11.spine12755.

    Article  PubMed  Google Scholar 

  50. Parvizi J, Barnes S, Shohat N, Edmiston CE Jr. Environment of care: is it time to reassess microbial contamination of the operating room air as a risk factor for surgical site infection in total joint arthroplasty? Am J Infect Control. 2017;45:1267–72. https://doi.org/10.1016/j.ajic.2017.06.027.

    Article  PubMed  Google Scholar 

  51. Persson M. Airborne contamination and surgical site infection: could a thirty-year-old idea help solve the problem? Med Hypotheses. 2019;132:109351. https://doi.org/10.1016/j.mehy.2019.109351.

    Article  PubMed  Google Scholar 

  52. Relton JE, Hall JE. An operation frame for spinal fusion. A new apparatus designed to reduce haemorrhage during operation. J Bone Joint Surg Br. 1967;49:327–332. https://www.ncbi.nlm.nih.gov/pubmed/6026518

  53. Kumar SJ, Torres BC, Borges JL, Quinn T. A radiolucent spine frame: a modification of the Relton-Hall spine frame. J Pediatr Orthop. 1994;14:383–4. https://doi.org/10.1097/01241398-199405000-00022.

    Article  CAS  PubMed  Google Scholar 

  54. Lee MJ, Lin EL. The use of the three-pronged Mayfield head clamp resulting in an intracranial epidural hematoma in an adult patient. Eur Spine J. 2010;19(Suppl 2):S187–9. https://doi.org/10.1007/s00586-010-1323-z.

    Article  PubMed  Google Scholar 

  55. Moutaoukil M, Bensghir M, Eddik S, Jaafari A, Ahtil R, Meziane M, et al. [Depressed skull fracture following the use of Mayfield headrest in adult patients: about a case and review of the literature]. Pan Afr Med J. 2016;24:129. https://doi.org/10.11604/pamj.2016.24.129.8367

  56. Kim E, Kim H-C, Lim Y-J, Kim C-H, Sohn S, Chung C-K, et al. Comparison of intra-abdominal pressure among 3 prone positional apparatuses after changing from the supine to the prone position and applying positive end-expiratory pressure in healthy euvolemic patients: a prospective observational study. J Neurosurg Anesthesiol. 2017;29:14–20. https://doi.org/10.1097/ANA.0000000000000257.

    Article  PubMed  Google Scholar 

  57. Benfanti PL, Geissele AE. The effect of intraoperative hip position on maintenance of lumbar lordosis: a radiographic study of anesthetized patients and unanesthetized volunteers on the Wilson frame. Spine. 1997;22:2299–303. https://doi.org/10.1097/00007632-199710010-00021.

    Article  CAS  PubMed  Google Scholar 

  58. Nickels TJ, Manlapaz MR, Farag E. Perioperative visual loss after spine surgery. World J Orthop. 2014;5:100–6. https://doi.org/10.5312/wjo.v5.i2.100.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kamel I, Barnette R. Positioning patients for spine surgery: avoiding uncommon position-related complications. World J Orthop. 2014;5:425–43. https://doi.org/10.5312/wjo.v5.i4.425.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shriver MF, Zeer V, Alentado VJ, Mroz TE, Benzel EC, Steinmetz MP. Lumbar spine surgery positioning complications: a systematic review. Neurosurg Focus. 2015;39:E16. https://doi.org/10.3171/2015.7.FOCUS15268.

    Article  PubMed  Google Scholar 

  61. Kambin P. Arthroscopic microdiskectomy. Mt Sinai J Med. 1991;58:159–164. https://www.ncbi.nlm.nih.gov/pubmed/1857361

  62. Yeung AT. Minimally invasive disc surgery with the Yeung endoscopic spine system (YESS). Surg Technol Int. 1999;8:267–277. https://www.ncbi.nlm.nih.gov/pubmed/12451541

  63. Mayer HM. A history of endoscopic lumbar spine surgery: what have we learnt? Biomed Res Int. 2019;2019:4583943. https://doi.org/10.1155/2019/4583943.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Choi G, Lee S-H, Lokhande P, Kong BJ, Shim CS, Jung B, et al. Percutaneous endoscopic approach for highly migrated intracanal disc herniations by foraminoplastic technique using rigid working channel endoscope. Spine. 2008;33:E508–15. https://doi.org/10.1097/BRS.0b013e31817bfa1a.

    Article  PubMed  Google Scholar 

  65. Dezawa A, Sairyo K. New minimally invasive discectomy technique through the interlaminar space using a percutaneous endoscope. Asian J Endosc Surg. 2011;4:94–8. https://doi.org/10.1111/j.1758-5910.2011.00072.x.

    Article  CAS  PubMed  Google Scholar 

  66. Ahn Y. Percutaneous endoscopic decompression for lumbar spinal stenosis. Expert Rev Med Devices. 2014;11:605–16. https://doi.org/10.1586/17434440.2014.940314.

    Article  CAS  PubMed  Google Scholar 

  67. He E-X, Guo J, Ling Q-J, Yin Z-X, Wang Y, Li M. Application of a narrow-surface cage in full endoscopic minimally invasive transforaminal lumbar interbody fusion. Int J Surg. 2017;42:83–9. https://doi.org/10.1016/j.ijsu.2017.04.053.

    Article  PubMed  Google Scholar 

  68. Carr GB, Murgel CAF. The use of the operating microscope in endodontics. Dent Clin N Am. 2010;54:191–214. https://doi.org/10.1016/j.cden.2010.01.002.

    Article  PubMed  Google Scholar 

  69. Damodaran O, Lee J, Lee G. Microscope in modern spinal surgery: advantages, ergonomics and limitations. ANZ J Surg. 2013;83:211–4. https://doi.org/10.1111/ans.12044.

    Article  PubMed  Google Scholar 

  70. Mack MJ, Regan JJ, Bobechko WP, Acuff TE. Application of thoracoscopy for diseases of the spine. Ann Thorac Surg. 1993;56:736–8. https://doi.org/10.1016/0003-4975(93)90966-l.

    Article  CAS  PubMed  Google Scholar 

  71. Hoernschemeyer DG, Boeyer ME, Robertson ME, Loftis CM, Worley JR, Tweedy NM, et al. Anterior vertebral body tethering for adolescent scoliosis with growth remaining: a retrospective review of 2 to 5-year postoperative results. J Bone Joint Surg Am. 2020;102:1169–76. https://doi.org/10.2106/JBJS.19.00980.

    Article  PubMed  Google Scholar 

  72. Kim DH, Jahng TA, Balabhadra RSV, Potulski M, Beisse R. Thoracoscopic transdiaphragmatic approach to thoracolumbar junction fractures. Spine J. 2004;4:317–28. https://doi.org/10.1016/j.spinee.2003.11.007.

    Article  PubMed  Google Scholar 

  73. Pannu CD, Farooque K, Sharma V, Singal D. Minimally invasive spine surgeries for treatment of thoracolumbar fractures of spine: a systematic review. J Clin Orthop Trauma. 2019;10:S147–55. https://doi.org/10.1016/j.jcot.2019.04.012.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Court C, Mansour E, Bouthors C. Thoracic disc herniation: surgical treatment. Orthop Traumatol Surg Res. 2018;104:S31–40. https://doi.org/10.1016/j.otsr.2017.04.022.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nuñez Alvarado, L.E. (2023). Allied Devices and Their Influence on Spinal Implants. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_101

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_101

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics