Skip to main content

Culture of Neuron and Glia Cells

Practical Approach to Mammalian Cell and Organ Culture

Abstract

The mammalian nervous system consists of neurons that transmit the coordinated neuronal signals throughout the body and glia or supporting cells that support, protect, and nourish the neurons. Adult neurons lose the capacity to divide due to the absence of centrioles. The supporting or glia cells which are around ten times in number than neuronal cells continuously divide throughout the lifetime. However, new neurons arise from neural stem cells (NSCs) during embryogenesis and are preserved even in adults within the specified brain regions such as the subventricular zone and other sections of the nervous system. Additionally, neuronal cell lines are derived from the neuronal tumor/cancer cells that have a capacity for continuous divisions. Immortal cell lines are characteristically different than NSCs. The present chapter describes the basics of isolation and primary culture of neuronal cells, particularly NSCs from various brain regions such as the hippocampus, striatum, and cerebellum. The culturing methods of primary neuronal stem cells and various neurological cell lines such as PC-12 and HEK-293 are discussed. Additionally, isolation and culture of glia or supporting cells, particularly microglial cell culture, have been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–35.

    CAS  PubMed  Google Scholar 

  • Biffi E, Regalia G, Menegon A, Ferrigno G, Pedrocchi A. The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study. PLoS One. 2013;8(12):e83899.

    PubMed  PubMed Central  Google Scholar 

  • Bohlen CJ, Benett C, Benett ML. Isolation and culture of microglia. Curr Protoc Immunol. 2019;125(1):e70.

    PubMed  Google Scholar 

  • Bonnamain V, Neveu I, Naveilhan P. Neural stem/progenitor cells as promising candidates for regenerative therapy of the central nervous system. Front Cell Neurosci. 2012;6:17.

    PubMed  PubMed Central  Google Scholar 

  • Brewer GJ, Torricelli JR, Evege EK, Price PJ. Optimized survival of hippocampal-neurons in B27-supplemented neurobasal (Tm), a new serum-free medium combination. J Neurosci Res. 1993;35:567–76.

    CAS  PubMed  Google Scholar 

  • Clarke D, Johansson C, Wilbertz J, Veress B, Nilsson E, Karlstrom H, et al. Generalized potential adult neuronal stem cells. Science. 2000;288:1660–3.

    CAS  PubMed  Google Scholar 

  • D’Mello SR, Borodezt K, Soltoff SP. Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci. 1997;17:1548–60.

    PubMed  PubMed Central  Google Scholar 

  • Dautzenberg FM, Higelin J, Teichert U. Functional characterization of corticotrophin-releasing factor type 1 receptor endogenously expressed in human embryonic kidney 293 cells [in process citation]. Eur J Pharmacol. 2000;390:51–9.

    CAS  PubMed  Google Scholar 

  • Devarajan G, Chen M, Muckersie E, Xu H. Culture and characterization of microglia from the adult murine retina. ScientificWorldJournal. 2014;2014:849368.

    Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase AKT. Science. 1997;275:661–5.

    CAS  PubMed  Google Scholar 

  • Galatro TF, Vainchtein ID, Brouwer N, Boddeke EWGM, Eggen BJL. Isolation of microglia and immune infiltrates from mouse and primate central nervous system. Methods Mol Biol. 2017;1559 https://doi.org/10.1007/978-1-4939-6786-5_23.

  • Gallo V, Ciotti MT, Coletti A, Aloisi F, Levi G. Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc Natl Acad Sci U S A. 1982;79:7919–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Ranbennur TK, Vasan HN. Study of antibacterial efficacy of hybrid chitosan-silver nanoparticles for prevention of specific biofilm and water purification. Int J Carbohydr Chem. 2011;2011:693759.

    Google Scholar 

  • Gordon J, Amini S, White MK. General overview of neuronal cell culture. Methods Mol Biol. 2013;1078:1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976;73:2424–24286.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci. 1996;16:1091–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Patzlaff NE, Jobe EM, Zha X. Isolation of multipotent neural stem/progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat Protoc. 2012;7(11):2005–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu BY, Weick JP, Junying Y, Ma LX, Zhang XQ, Thomson JA, Zhang SC. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A. 2010;107(9):4335–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neuronal stem cells to sites of CNS injury by the stromal cell derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101:18117–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jana M, Jana A, Pal U, Pahan K. A simplified method for isolating highly purified neurons, oligodendrocytes, astrocytes and microglia from the same human fetal brain tissue. Neurochem Res. 2007;32(12):2015–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kettenmann H, Faissner A, Trotter J. Neuron-glia interactions in homeostasis and degeneration. In: Comprehensive human physiology. Berlin/Heidelberg: Springer; 1996. p. 533–43.

    Google Scholar 

  • Lian H, Roy E, Zheng H. Protocol for primary microglial culture preparation. Bio Protoc. 2016;6(21):e1989.

    PubMed  Google Scholar 

  • Lin YC, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun. 2014;5:Article number 4767.

    PubMed  Google Scholar 

  • Liste-Calleja L, Lecina M, Cairó JJ. HEK293 cell culture media study: increasing cell density for different bioprocess applications. BMC Proc. 2013;7:Article number P51.

    Google Scholar 

  • Louis SA, Mark CKH, Reynolds BA. Methods to culture, differentiate, and characterize neural stem cells from the adult and embryonic mouse central nervous system. Methods Mol Biol. 2013;946:479–506.

    CAS  PubMed  Google Scholar 

  • Menon V, Thomas R, Ghale AR, Reinhard C, Pruszak J. Flow cytometry protocols for surface and intracellular antigen analyses of neural cell types. J Vis Exp. 2014;94:52241.

    Google Scholar 

  • Messer A. The maintenance and identification of mouse cerebellar granule cells in monolayer culture. Brain Res. 1977;130:1–12.

    CAS  PubMed  Google Scholar 

  • Naia L, Rego A. Isolation and maintenance of striatal neurons. Bio Protoc. 2018;8(8):e2823.

    PubMed  PubMed Central  Google Scholar 

  • O’Connor TJ, Vescovi AL, Reynolds BA. Isolation and propagation of stem cells from various regions of the embryonic mammalian central nervous system. In: Celis JE, editor. Cell biology: a laboratory handbook, vol. 1. London: Academic Press; 1998. p. 149–53.

    Google Scholar 

  • Polleux F, Ghosh A. The slice overlay assay: a versatile tool to study the influence of extracellular signals on neuronal development. Sci STKE. 2002;136:pl9.

    Google Scholar 

  • Ray B, Chopra N, Long JM, Lahiri DK. Human primary mixed brain cultures: preparation, differentiation, characterization and application to neuroscience research. Mol Brain. 2014;7:63.

    PubMed  PubMed Central  Google Scholar 

  • Reynolds B, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.

    CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996;175:1–13.

    CAS  PubMed  Google Scholar 

  • Rietze RL, Reynolds BA. Neural stem cell isolation and characterization. Methods Enzymol. 2006;419:3–23.

    CAS  PubMed  Google Scholar 

  • Rybachuk O, Kopach O, Pivneva T, Kyryk V. Isolation of neural stem cells from the embryonic mouse hippocampus for in vitro growth or engraftment into a host tissue. Bio Protoc. 2019;9(4):e3165.

    PubMed  PubMed Central  Google Scholar 

  • Sahu MP, Nikkila O, LÃ¥gas S, Kolehmainen S, Castrén E. Culturing primary neurons from rat hippocampus and cortex. Neuronal Signal. 2019;3:NS20180207.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seibenhener ML, Wooten MW. Isolation and culture of hippocampal neurons from prenatal mice. J Vis Exp. 2012;65:e3634.

    Google Scholar 

  • Selman K, Kafatos FC. Transdifferentiation in the labial gland of silk moths: is DNA required for cellular metamorphosis? Cell Differ. 1974;3(2):81–94.

    CAS  PubMed  Google Scholar 

  • Shaw G, Morse S, Ararat M, Graham FL. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 2002;16:869–71.

    CAS  PubMed  Google Scholar 

  • Shin S, Vemuri M. Culture and differentiation of human neural stem cells. In: Doering L, editor. Protocols for neural cell culture, Springer protocols handbooks. London: Humana Press; 2009. https://doi.org/10.1007/978-1-60761-292-6_3.

    Chapter  Google Scholar 

  • Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell. 1992;68(1):33–51. https://doi.org/10.1016/0092-8674(92)90204-P.

    Article  CAS  PubMed  Google Scholar 

  • Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N. Evolution of the human nervous system function, structure and development. Cell. 2017;170(2):226–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stratmann G, Lee J, Sall JW, Lee BH, Alvi RS, Shih J, et al. Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology. 2014;39:2275–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Temple S. Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989;340(6233):471–3.

    CAS  PubMed  Google Scholar 

  • Thangnipon W, Kingsbury A, Webb M, Balazs R. Observations on rat cerebellar cells in vitro: influence of substratum, potassium concentration and relationship between neurons and astrocytes. Brain Res. 1983;313:177–89.

    CAS  PubMed  Google Scholar 

  • Thomas P, Smart TG. HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods. 2005;51:187–200.

    CAS  PubMed  Google Scholar 

  • Vaccines and Related Biological Products Advisory Committee Meeting (PDF); Center for Biologics Evaluation and Research, May 2001;14–22: USFDA, p. 81.

    Google Scholar 

  • Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 1996;19:387–93.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mukherjee, S., Malik, P., Mukherjee, T.K. (2023). Culture of Neuron and Glia Cells. In: Mukherjee, T.K., Malik, P., Mukherjee, S. (eds) Practical Approach to Mammalian Cell and Organ Culture. Springer, Singapore. https://doi.org/10.1007/978-981-19-1731-8_10-2

Download citation

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Culture of Neuron and Glia Cells
    Published:
    20 January 2023

    DOI: https://doi.org/10.1007/978-981-19-1731-8_10-2

  2. Original

    Culture of Neuron and Glia Cells
    Published:
    27 December 2022

    DOI: https://doi.org/10.1007/978-981-19-1731-8_10-1