Skip to main content

Current State of Stem Cell Therapy for Heart Diseases

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Therapy

Abstract

Heart disease is very common among older adults and is one of the main causes of death worldwide. With age, the functionality of the heart will decrease following the changes in the cardiomyocytes and cardiac tissue. Generally, the number of cardiomyocytes will decrease, the number of senescent cells will increase, the cardiac tissue will become thicker, and the contractility will diminish. Besides, heart diseases such as myocardial infarction and heart failure also will reduce the functionality of the heart. Currently, heart disease is normally treated with medication and surgery. In severe conditions, the patient will be recommended to opt for a heart transplant. However, medication and surgery cannot reverse the pathological changes in the heart, and it is very difficult to find a suitable heart for transplantation. Stem cell therapy offers a glimpse of hope to these patients as the cells can stimulate the proliferation of cardiac progenitor cells and cardiomyocytes as well as secrete the paracrine factors which modulate the tissue environment to promote regeneration. Even though stem cells, e.g., mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs), have been shown to differentiate into cardiomyocytes in vitro, however, there is a lack of evidence to prove that the transplanted cells can reconstitute the myocardium in vivo. The number of clinical trials using stem cells to treat heart disease is still very limited. Results from these trials suggested that stem cell therapy is safe and provides certain benefits to the patients. Nonetheless, there is still a long way to go for the researchers to identify the ideal cell source and therapy protocol to achieve a greater therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

AF:

Atrial fibrillation

AMI:

Acute myocardial infarction

Ang-1:

Angiopoietin-1

ARB:

Angiotensin receptor blocker

ASCs:

Adipose-derived stromal cells

bFGF:

Basic fibroblast growth factor

BM:

Bone marrow

BMMC:

Bone marrow mononuclear cell

BMSCs:

Bone marrow-derived mesenchymal stem cells

CAD:

Coronary artery disease

CCS:

Canadian Cardiovascular Society

CPCs:

Cardiac progenitor cells

CSCs:

Cardiac stem cells

CT:

Computed tomography

DNA:

Deoxyribonucleic acid

eNOS:

Human endothelial nitric oxide synthase

EPCs:

Endothelial progenitor cells

ESC:

Embryonic stem cell

HGF:

Hepatocyte growth factor

HLHS:

Hypoplastic left heart syndrome

I/C:

Intracoronary

I/V:

Intravenous

IDO:

Indoleamine-2,3-dioxygenase

IFN-γ:

Interferon-gamma

IL:

Interleukin

iPSC:

Induced pluripotent stem cell

ISCT:

International Society for Cell & Gene Therapy

LVAD:

Left ventricular assist device

LVDd:

Left ventricular end-diastolic internal diameter

LVEDV:

Left ventricular end-diastolic volume

LVEF:

Left ventricular ejection fraction

LVESV:

Left ventricular end-systolic volume

MCP-1:

Monocyte chemotactic protein-1

MI:

Myocardial infarction

MLHFQ:

Minnesota Living with Heart Failure Questionnaire

MNCs:

Mononuclear cells

MSC:

Mesenchymal stem cell

NO:

Nitric oxide

NYHA:

New York Heart Association

PCL:

Polycaprolactone

PDGF:

Platelet-derived growth factor

PGE2:

Prostaglandin E2

PGF:

Placental growth factor

PLLA:

Poly-L-lactic acid

PSI:

Perfusion score index

RA:

Refractory angina

RCTs:

Randomized controlled trials

ROS:

Reactive oxygen species

SAQ:

Seattle Angina Questionnaire

SPECT:

Single-photon emission computed tomography

T/E:

Transendocardial

TGF-β:

Transforming growth factor-beta

TNF-α:

Tumor necrosis factor-alpha

UC-MSCs:

Umbilical cord-derived mesenchymal stem cells

VEGF:

Vascular endothelial growth factor

WMSI:

Left ventricular-wall motion score index

References

  • Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KAT, Guarita-Souza LC, Foldes G (2016) Stem cell death and survival in heart regeneration and repair. Apoptosis 21(3):252–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamiak M, Cheng G, Bobis-Wozowicz S, Zhao L, Kedracka-Krok S, Samanta A et al (2018) Induced pluripotent stem cell (iPSC)-derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs. Circ Res 122(2):296–309

    Article  CAS  PubMed  Google Scholar 

  • Assmus B, Rolf A, Erbs S, Elsässer A, Haberbosch W, Hambrecht R et al (2010) Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 3(1):89–96

    Article  PubMed  Google Scholar 

  • Bartolucci J, Verdugo FJ, González PL, Larrea RE, Abarzua E, Goset C et al (2017) Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure. Circ Res 121(10):1192–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P et al (2005) Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction. Circulation 112(9_supplement):I-178–I–183

    Article  Google Scholar 

  • Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J et al (2013) Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61(23):2329–2338

    Article  PubMed  Google Scholar 

  • Baruah J, Wary KK (2020) Exosomes in the regulation of vascular endothelial cell regeneration. Front Cell Dev Biol 7:353

    Article  PubMed  PubMed Central  Google Scholar 

  • Beeres SLMA, Bax JJ, Dibbets-Schneider P, Stokkel MPM, Fibbe WE, van der Wall EE et al (2006) Sustained effect of autologous bone marrow mononuclear cell injection in patients with refractory angina pectoris and chronic myocardial ischemia: twelve-month follow-up results. Am Heart J 152(4):684.e11–684.e16

    Article  Google Scholar 

  • Birati EY, Jessup M (2015) Left ventricular assist devices in the management of heart failure. Card Fail Rev 1(1):25–30

    Article  Google Scholar 

  • Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen P-S et al (2009) IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 27(1):230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao F, Sun D, Li C, Narsinh K, Zhao L, Li X et al (2009) Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J 30(16):1986–1994

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(2 Suppl 2):S3–S23

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Fang W, Ye F, Liu Y-H, Qian J, Shan S et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94(1):92–95

    Article  PubMed  Google Scholar 

  • Chiao YA, Rabinovitch PS (2015) The aging heart. Cold Spring Harb Perspect Med 5(9):a025148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M et al (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2(12):e244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudry F, Hamshere S, Saunders N, Veerapen J, Bavnbek K, Knight C et al (2016) A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trial†. Eur Heart J 37(3):256–263

    Article  PubMed  Google Scholar 

  • Christou DD, Seals DR (2008) Decreased maximal heart rate with aging is related to reduced β-adrenergic responsiveness but is largely explained by a reduction in intrinsic heart rate. J Appl Physiol 105(1):24–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung ES, Miller L, Patel AN, Anderson RD, Mendelsohn FO, Traverse J et al (2015) Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial. Eur Heart J 36(33):2228–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo A, Castellani M, Piccaluga E, Pusineri E, Palatresi S, Longari V et al (2011) Myocardial blood flow and infarct size after CD133+ cell injection in large myocardial infarction with good recanalization and poor reperfusion: results from a randomized controlled trial. J Cardiovasc Med 12(4):239–248

    Article  Google Scholar 

  • Dababneh E, Goldstein S (2020) Chronic ischemic heart disease selection of treatment modality. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Daniele T, Marcello R, Daria N, Ezio M, Alyssa M, Isao S et al (2004) Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94(4):514–524

    Article  CAS  Google Scholar 

  • Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20(1):5–14

    Article  PubMed  Google Scholar 

  • dos Santos Nogueira FB, Silva SA, Haddad AF, Peixoto CM, de Carvalho RM, Tuche FAA et al (2009) Systolic function of patients with myocardial infarction undergoing autologous bone marrow transplantation. Arq Bras Cardiol 93(4):374–379

    Google Scholar 

  • Efimenko AY, Kochegura TN, Akopyan ZA, Parfyonova YV (2015) Autologous stem cell therapy: how aging and chronic diseases affect stem and progenitor cells. Biores Open Access 4(1):26–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein ND, Davis JS (2003) Sensing stretch is fundamental. Cell 112(2):147–150

    Article  CAS  PubMed  Google Scholar 

  • Fisher SA, Zhang H, Doree C, Mathur A, Martin-Rendon E (2015) Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 9:CD006536

    Google Scholar 

  • Fisher SA, Doree C, Mathur A, Taggart DP, Martin-Rendon E (2016) Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev 12(12):CD007888

    PubMed  Google Scholar 

  • Fleg JL, Strait J (2012) Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease. Heart Fail Rev 17(4–5):545–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Francisco F-A, Alberto SRJ, Javier G-F, Eugenia FM, Jesús PM, Luis de la F et al (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95(7):742–748

    Article  CAS  Google Scholar 

  • Frangogiannis NG (2015) Pathophysiology of myocardial infarction. Compr Physiol 5(4):1841–1875

    Article  PubMed  Google Scholar 

  • Gallina C, Turinetto V, Giachino C (2015) A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Khan M, editor. Stem Cells Int 2015:765846

    Google Scholar 

  • Ge J, Li Y, Qian J, Shi J, Wang Q, Niu Y et al (2006) Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart 92(12):1764–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grajek S, Popiel M, Gil L, Bręborowicz P, Lesiak M, Czepczyński R et al (2009) Influence of bone marrow stem cells on left ventricle perfusion and ejection fraction in patients with acute myocardial infarction of anterior wall: randomized clinical trial: Impact of bone marrow stem cell intracoronary infusion on improvement of microc. Eur Heart J 31(6):691–702

    Article  PubMed  Google Scholar 

  • Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Desai AS et al (2016) Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387(10024):1178–1186

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Morimatsu M, Feng T, Lan F, Chang D, Wan F et al (2020) Stem cell-derived cell sheet transplantation for heart tissue repair in myocardial infarction. Stem Cell Res Ther 11(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Haack-Sørensen M, Friis T, Mathiasen AB, Jørgensen E, Hansen L, Dickmeiss E et al (2013) Direct intramyocardial mesenchymal stromal cell injections in patients with severe refractory angina: one-year follow-up. Cell Transplant 22(3):521–528

    Article  PubMed  Google Scholar 

  • Hafez P, Jose S, Chowdhury SR, Ng MH, Ruszymah BHI, Abdul Rahman Mohd R (2016) Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone. Cell Biol Int 40(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Haider HK (2006) Bone marrow cells for cardiac regeneration and repair: current status and issues. Expert Rev Cardiovasc Ther 4:557–568

    Article  CAS  PubMed  Google Scholar 

  • Haider KH (2017) Hematopoietic stem cell transplantation: the quality matters. J Stem Cell Res Ther 7:6

    Article  Google Scholar 

  • Haider KH (2018) Bone marrow cell therapy and cardiac reparability: better cell characterization will enhance clinical success. Regen Med 13(4): 457–475

    Google Scholar 

  • Haider KH, Aramini B (2020) Mircrining the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther 11(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Haider HK, Ashraf M (2005) Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol 288(6):H2557–H2567

    Article  CAS  PubMed  Google Scholar 

  • Haider KH, Ashraf M (2012) Preconditioning approach in stem cell therapy for the treatment of infarcted heart. Prog Mol Biol Transl Sci 111:323–356

    Article  CAS  PubMed  Google Scholar 

  • Haider KH, Aslam M. Cell-free therapy with stem cell secretions: protection, repair and regeneration of the injured myocardium. In: Haider Kh H, Aziz S (eds) Stem cells: from hype to real hope. Medicine & life sciences. DE GRUYTER, Geithner Straße13- 10785 Berlin, Germany. (Published, 2018)

    Google Scholar 

  • Haider HK, Aziz S (2017) Paracrine hypothesis and cardiac repair. Int J Stem Cell Res Transplant 5(1):265–267

    Google Scholar 

  • Haider KH, Jiang S, Niagara MI, Ashraf M (2008) IGF-I over expressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circ Res 103:1300–1308

    Article  CAS  PubMed  Google Scholar 

  • Haider KH, Mustafa A, Ashraf M, Feng Y (2011) Genetic modification of stem cells for improved therapy of the infarcted myocardium. Mol Pharm 8(5):1446–1457

    Article  CAS  PubMed  Google Scholar 

  • Henry TD, Pepine CJ, Lambert CR, Traverse JH, Schatz R, Costa M et al (2017) The Athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction. Catheter Cardiovasc Interv 89(2):169–177

    Article  PubMed  Google Scholar 

  • Hirsch A, Nijveldt R, van der Vleuten PA, Tijssen JGP, van der Giessen WJ, Tio RA et al (2010) Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE. Eur Heart J 32(14):1736–1747

    Article  PubMed  Google Scholar 

  • Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ et al (2005) International Society for Cellular Therapy. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7(5):393–395

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SM, Sani M, Haider KH, Dorvash MR, Ziaee SM, Karimi A (2018) Concomitant use of mesenchymal stem cells and neural stem cells for treatment of spinal cord injury: a combo cell therapy approach. Neurosci Lett 668:138–146

    Article  CAS  PubMed  Google Scholar 

  • Huikuri HV, Kervinen K, Niemelä M, Ylitalo K, Säily M, Koistinen P et al (2008) Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J 29(22):2723–2732

    Article  PubMed  Google Scholar 

  • Hunt SA, Ross EA (2002) The REMATCH trial: long-term use of a left ventricular assist device for end-stage heart failure. J Card Fail 8(2):59–60

    Article  PubMed  Google Scholar 

  • Ibrahim AGE, Cheng K, Marbán E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2(5):606–619

    Article  CAS  Google Scholar 

  • Igura K, Haider KH, Ahmed RPH, Sheriff S, Ashraf M (2011) Neuropeptide-Y (NPY) and NPY Y5 receptor (Y5R) interaction restores impaired growth potential of ageing bone marrow stromal cells. Rejuvenation Res 14(4):393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121

    Article  PubMed  Google Scholar 

  • Javed B, Epstein SE, Greene SJ, Quyyumi AA, Sikora S, Kim RJ et al (2017) Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy. Circ Res 120(2):332–340

    Article  CAS  Google Scholar 

  • Jiang S, Haider KH, Niagara MI, Salim A, Ashraf M (2006) Supportive interaction between cell survival signaling and angio-competent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 99:776–784

    Article  CAS  PubMed  Google Scholar 

  • Johnson FL (2014) Pathophysiology and etiology of heart failure. Cardiol Clin 32(1):9–19

    Article  PubMed  Google Scholar 

  • Kanelidis AJ, Premer C, Lopez J, Balkan W, Hare JM (2017) Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-Analysis of preclinical studies and clinical trials. Circ Res 120(7):1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Kc P, Hong Y, Zhang G (2019) Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen Biomater 6(4):185–199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kemp CD, Conte JV (2012) The pathophysiology of heart failure. Cardiovasc Pathol 21(5):365–371

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Haider KH, Jiang S, Ashraf M (2009) Ischemic preconditioning augments survival of stem cells via miR-107 and miR-210 expression. J Biol Chem 284:33161–33168

    Article  PubMed  CAS  Google Scholar 

  • Kim HW, Ashraf M, Jiang S, Haider KH (2012a) Stem cell based delivery of hypoxamir-210 to the infarcted heart: implications on stem cell survival and preservation of the infarcted heart function. J Mol Med 90(9):997–1010

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Malik F, Durrani S, Ashraf M, Jiang S, Haider KH (2012b) Concomitant activation of mir-107/pdcd10 and hypoxamir-210/casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal 17(8):1053–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyurkchiev D (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6(5):552

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Circulation 107(2):346–354

    Article  PubMed  Google Scholar 

  • Leistner DM, Fischer-Rasokat U, Honold J, Seeger FH, Schächinger V, Lehmann R et al (2011) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol 100(10):925–934

    Article  PubMed  Google Scholar 

  • Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX (2020a) Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci 10(1):112

    Article  PubMed  PubMed Central  Google Scholar 

  • Liau LL, Looi QH, Eng SP, Yazid MD, Sulaiman N, Busra MFM et al (2020b) Mesenchymal stem cells for the treatment of immune-mediated disease. In: Haider KH (eds) Stem cells: from hype to hope. World Scientific, Singapore, pp 178–210

    Google Scholar 

  • Lim J, Razi ZRM, Law JX, Nawi AM, Idrus RBH, Chin TG et al (2018) Mesenchymal stromal cells from the maternal segment of human umbilical cord is ideal for bone regeneration in allogenic setting. Tissue Eng Regen Med 15(1):75–87

    Article  CAS  PubMed  Google Scholar 

  • Lipiec P, Krzemińska-Pakuła M, Plewka M, Kuśmierek J, Płachcińska A, Szumiński R et al (2009) Impact of intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction on left ventricular perfusion and function: a 6-month follow-up gated 99mTc-MIBI single-photon emission computed tomography study. Eur J Nucl Med Mol Imaging 36(4):587–593

    Article  PubMed  Google Scholar 

  • Łos MJ, Skubis A, Ghavami S (2018) Stem cells- definition and types of stem cells, stemness and diferentiation. In: Łos MJ, Hudecki A, Wiechec E (Eds) Stem cells and biomaterials for regenerative medicine. Academic, Cambridge, Massachusetts, United States, pp 5–16

    Google Scholar 

  • Losordo DW, Henry TD, Charles D, Joon SL, Costa MA, Theodore B et al (2011) Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 109(4):428–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger D, Lipinski MJ, Westman PC, Glover DK, Dimastromatteo J, Frias JC et al (2017) Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circ Res 120(10):1598–1613

    Article  CAS  PubMed  Google Scholar 

  • Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355(12):1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Lunde K, Solheim S, Aakhus S, Arnesen H, Moum T, Abdelnoor M et al (2007) Exercise capacity and quality of life after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: results from the Autologous Stem cell Transplantation in Acute Myocardial Infarction (ASTAMI) randomized controlled trial. Am Heart J 154(4):710.e1–710.e8

    Article  Google Scholar 

  • Lunde K, Solheim S, Forfang K, Arnesen H, Brinch L, Bjørnerheim R et al (2008) Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells: safety, clinical outcome, and serial changes in left ventricular function during 12-months’ follow-up. J Am Coll Cardiol 51(6):674–676

    Article  PubMed  Google Scholar 

  • Maacha S, Sidahmed H, Jacob S, Gentilcore G, Calzone R, Grivel J-C et al (2020) Paracrine mechanisms of mesenchymal stromal cells in angiogenesis. Stem Cells Int 2020:4356359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marketou ME, Parthenakis F, Vardas PE (2016) Pathological left ventricular hypertrophy and stem cells: current evidence and new perspectives. Hosoda T, editor. Stem Cells Int 2016:5720758

    Article  PubMed  CAS  Google Scholar 

  • Mathiasen AB, Haack-Sørensen M, Jørgensen E, Kastrup J (2013) Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina- final 3-year follow-up. Int J Cardiol 170(2):246–251

    Article  PubMed  Google Scholar 

  • Mathur A, Arnold R, Assmus B, Bartunek J, Belmans A, Bönig H et al (2017) The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: rationale and design of the BAMI trial. Eur J Heart Fail 19(11):1545–1550

    Article  CAS  PubMed  Google Scholar 

  • Mc Namara K, Alzubaidi H, Jackson JK (2019) Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract 8:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Meluzín J, Mayer J, Groch L, Janoušek S, Horňáček I, Hlinomaz O et al (2006) Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J 152(5):975.e9–975.15

    Article  Google Scholar 

  • Meluzín J, Janoušek S, Mayer J, Groch L, Horňáček I, Hlinomaz O et al (2008) Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol 128(2):185–192

    Article  PubMed  Google Scholar 

  • Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Cacciapuoti I et al (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36(30):2011–2017

    Article  PubMed  Google Scholar 

  • Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction. Circulation 113(10):1287–1294

    Article  PubMed  Google Scholar 

  • Meyer GP, Wollert KC, Lotz J, Pirr J, Rager U, Lippolt P et al (2009) Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur Heart J 30(24):2978–2984

    Article  PubMed  Google Scholar 

  • Nakanishi C, Yamagishi M, Yamahara K, Hagino I, Mori H, Sawa Y et al (2008) Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun 374(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DXM et al (2012) Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307(16):1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilar J-Q, Jose G-FJ, Manel S, Xavier G-M, Roberto D-B, Leopoldo L et al (2014) Selected CD133+ progenitor cells to promote angiogenesis in patients with refractory angina. Circ Res 115(11):950–960

    Article  CAS  Google Scholar 

  • Pokushalov E, Romanov A, Chernyavsky A, Larionov P, Terekhov I, Artyomenko S et al (2010) Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J Cardiovasc Transl Res 3(2):160–168

    Article  PubMed  Google Scholar 

  • Povsic TJ, Henry TD, Traverse JH, Fortuin FD, Schaer GL, Kereiakes DJ et al (2016) The RENEW trial: efficacy and safety of intramyocardial autologous CD34+ cell administration in patients with refractory angina. JACC Cardiovasc Interv 9(15):1576–1585

    Article  PubMed  Google Scholar 

  • Qayyum AA, Mathiasen AB, Helqvist S, Jørgensen E, Haack-Sørensen M, Ekblond A et al (2019) Autologous adipose-derived stromal cell treatment for patients with refractory angina (MyStromalCell Trial): 3-years follow-up results. J Transl Med 17(1):360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajab AM, Rajab TM, AlJundi S, Haider KH. Bone stem cell therapy in the clinical perspective: a focus on nonrandomized and randomized trials. In: Haider Kh H (ed) Stem cells: from myth to reality and evolving. Medicine & life sciences. DE GRUYTER, Geithner Straße13- 10785 Berlin, Germany. (Published, 2019)

    Google Scholar 

  • Reis LA, Chiu LLY, Feric N, Fu L, Radisic M (2016) Biomaterials in myocardial tissue engineering. J Tissue Eng Regen Med 10(1):11–28

    Article  CAS  PubMed  Google Scholar 

  • Roncalli J, Mouquet F, Piot C, Trochu J-N, Le Corvoisier P, Neuder Y et al (2010) Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur Heart J 32(14):1748–1757

    Article  PubMed  Google Scholar 

  • Schächinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44(8):1690–1699

    Article  PubMed  Google Scholar 

  • Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221

    Article  PubMed  Google Scholar 

  • Schaefer A, Meyer GP, Fuchs M, Klein G, Kaplan M, Wollert KC et al (2006) Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. Eur Heart J 27(8):929–935

    Article  PubMed  Google Scholar 

  • Shah A, Gandhi D, Srivastava S, Shah KJ, Mansukhani R (2017) Heart failure: a class review of pharmacotherapy. Pharm Ther 42(7):464–472

    Google Scholar 

  • Shahid MS, Haider KH (2016) Modest outcome of clinical trials with bone marrow cells for myocardial repair: is the autologous source of cells the prime culprit? J Thorac Dis 8(10):E1371–E1374

    Article  PubMed  PubMed Central  Google Scholar 

  • Siamak D, Aliette M, Nursen M, Bernard R, Bernadette K, Patrick H et al (2003) Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 108(10):II-253–II–258

    Google Scholar 

  • Steenman M, Lande G (2017) Cardiac aging and heart disease in humans. Biophys Rev 9(2):131–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Strait JB, Lakatta EG (2012) Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 8(1):143–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918

    Article  PubMed  Google Scholar 

  • Sürder D, Manka R, Lo Cicero V, Moccetti T, Rufibach K, Soncin S et al (2013) Intracoronary injection of bone marrow–derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation 127(19):1968–1979

    Article  PubMed  Google Scholar 

  • Sürder D, Manka R, Moccetti T, Lo Cicero V, Emmert MY, Klersy C et al (2016) Effect of bone marrow-derived mononuclear cell treatment, early or late after acute myocardial infarction: twelve months CMR and long-term clinical results. Circ Res 119(3):481–490

    Article  PubMed  CAS  Google Scholar 

  • Taljaard M, Ward MR, Kutryk MJB, Courtman DW, Camack NJ, Goodman SG et al (2010) Rationale and design of enhanced angiogenic cell therapy in acute myocardial infarction (ENACT-AMI): the first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction. Am Heart J 159(3):354–360

    Article  CAS  PubMed  Google Scholar 

  • Tao H, Han Z, Han ZC, Li Z (2016) Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells Int 2016:1314709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tardiff JC (2006) Cardiac hypertrophy: stressing out the heart. J Clin Invest 116(6):1467–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tendera M, Wojakowski W, Rużyłło W, Chojnowska L, Kępka C, Tracz W et al (2009) Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre myocardial regeneration by intracor. Eur Heart J 30(11):1313–1321

    Article  PubMed  Google Scholar 

  • Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z (2015) Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem 37(6):2415–2424

    Article  CAS  PubMed  Google Scholar 

  • Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD (2018) Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 138(20):e618–e651

    PubMed  Google Scholar 

  • Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA et al (2008) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1(2):129–137

    Article  CAS  Google Scholar 

  • Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AAM et al (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6(3):206–214

    Article  PubMed  Google Scholar 

  • Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS (2015) Mitochondrial dysfunction in cardiac aging. Biochim Biophys Acta Bioenerg 1847(11):1424–1433

    Article  CAS  Google Scholar 

  • Traverse JH, Henry TD, Vaughan DE, Ellis SG, Pepine CJ, Willerson JT et al (2010) LateTIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Tex Hear Inst J 37(4):412–420

    Google Scholar 

  • Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DXM et al (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306(19):2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DXM, Ellis SG et al (2012) Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 308(22):2380–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traverse JH, Henry TD, Pepine CJ, Willerson JT, Chugh A, Yang PC et al (2018) TIME trial: effect of timing of stem cell delivery following ST-elevation myocardial infarction on the recovery of global and regional left ventricular function: final 2-year analysis. Circ Res 122(3):479–488

    Article  CAS  PubMed  Google Scholar 

  • Tse H-F, Thambar S, Kwong Y-L, Rowlings P, Bellamy G, McCrohon J et al (2007) Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur Heart J 28(24):2998–3005

    Article  PubMed  Google Scholar 

  • van Ramshorst J, Bax JJ, Beeres SLMA, Dibbets-Schneider P, Roes SD, Stokkel MPM et al (2009) Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 301(19):1997–2004

    Article  PubMed  Google Scholar 

  • Vicario J, Campos C, Piva J, Faccio F, Gerardo L, Becker C et al (2004) Transcoronary sinus administration of autologous bone marrow in patients with chronic refractory stable angina: phase 1. Cardiovasc Radiat Med 5(2):71–76

    CAS  PubMed  Google Scholar 

  • Wang S, Cui J, Peng W, Lu M (2010) Intracoronary autologous CD34+ stem cell therapy for intractable angina. Cardiology 117(2):140–147

    Article  PubMed  Google Scholar 

  • Wang Y, Chen X, Cao W, Shi Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15(11):1009

    Article  CAS  PubMed  Google Scholar 

  • Ward MR, Abadeh A, Connelly KA (2018) Concise review: rational use of mesenchymal stem cells in the treatment of ischemic heart disease. Stem Cells Transl Med 7(7):543–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojciech W, Tomasz J, Aleksandra M-W, Zofia P, Mirosław M, Wojciech R et al (2017) Effects of transendocardial delivery of bone marrow-derived CD133+ cells on left ventricle perfusion and function in patients with refractory angina. Circ Res 120(4):670–680

    Article  CAS  Google Scholar 

  • Wollert KC, Meyer GP, Lotz J, Ringes Lichtenberg S, Lippolt P, Breidenbach C et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148

    Article  PubMed  Google Scholar 

  • Wollert KC, Meyer GP, Müller-Ehmsen J, Tschöpe C, Bonarjee V, Larsen AI et al (2017) Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST-2 randomised placebo-controlled clinical trial. Eur Heart J 38(39):2936–2943

    Article  CAS  PubMed  Google Scholar 

  • Yazdanyar A, Newman AB (2009) The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriatr Med 25(4):563–577

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu B, Kim HW, Gong M, Wang J, Millard RW, Wang Y et al (2015) Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 182:349–360

    Article  PubMed  Google Scholar 

  • Zhang H, Xiang M, Meng D, Sun N, Chen S (2016) Inhibition of myocardial ischemia/ reperfusion injury by exosomes secreted from mesenchymal stem cells. Stem Cells Int 2016:4328362

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XF, Xu Y, Zhu ZY, Gao CY, Shi YN (2015) Clinical observation of umbilical cord mesenchymal stem cell treatment of severe systolic heart failure. Genet Mol Res 14(2):3010–3017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants (FF-2019-450/1 and FF-2020-038) from the Faculty of Medicine, Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Xian Law .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tan, Y.S., Looi, Q.H., Sulaiman, N., Ng, M.H., Law, J.X. (2022). Current State of Stem Cell Therapy for Heart Diseases. In: Haider, K.H. (eds) Handbook of Stem Cell Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6016-0_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6016-0

  • Online ISBN: 978-981-16-6016-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics