Skip to main content
Log in

Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Important changes occur in the cardiovascular system with advancing age, even in apparently healthy individuals. Thickening and stiffening of the large arteries develop due to collagen and calcium deposition and loss of elastic fibers in the medial layer. These arterial changes cause systolic blood pressure to rise with age, while diastolic blood pressure generally declines after the sixth decade. In the left ventricle, modest concentric wall thickening occurs due to cellular hypertrophy, but cavity size does not change. Although left ventricular systolic function is preserved across the age span, early diastolic filling rate declines 30–50% between the third and ninth decades. Conversely, an age-associated increase in late diastolic filling due to atrial contraction preserves end-diastolic volume. Aerobic exercise capacity declines approximately 10% per decade in cross-sectional studies; in longitudinal studies, however, this decline is accelerated in the elderly. Reductions in peak heart rate and peripheral oxygen utilization but not stroke volume appear to mediate the age-associated decline in aerobic capacity. Deficits in both cardiac β-adrenergic receptor density and in the efficiency of postsynaptic β-adrenergic signaling contribute significantly to the reduced cardiovascular performance during exercise in older adults. Although these cardiovascular aging changes are considered “normative”, they lower the threshold for the development of cardiovascular disease, which affects the majority of older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. U. S. Census Bureau. National population projections link: http://www.census.gov/population/www/projections/summarytables.html

  2. Lakatta E, Wang M, Najjar SS (2009) Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med Clin North Am 93:583–604

    Article  PubMed  CAS  Google Scholar 

  3. Gerstenblith G, Frederiksen J, Yin FC et al (1977) Echocardiographic assessment of a normal adult aging population. Circulation 56:273–278

    PubMed  CAS  Google Scholar 

  4. Lam CSP, Xanthakis V, Sullivan LM et al (2010) Aortic root remodeling over the adult life course. Longitudinal data from the Framingham heart study. Circulation 122:884–890

    Article  PubMed  Google Scholar 

  5. Nagai Y, Metter EJ, Earley CJ et al (1998) Increased carotid artery intimal-medial thickness in asymptomatic older subjects with exercise-induced myocardial ischemia. Circulation 98:1504–1509

    PubMed  CAS  Google Scholar 

  6. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A (2010) Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 65:1028–1041

    Article  PubMed  Google Scholar 

  7. Zieman SJ, Melenovsky V, Kass DA (2005) Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 25:932–943

    Article  PubMed  CAS  Google Scholar 

  8. Lakatta E, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation 107:139–146

    Article  PubMed  Google Scholar 

  9. Semba RD, Najjar SS, Sun K, Lakatta E, Ferrucci L (2009) Serum carboxymethyl-lysine, an advanced glycation end product, is associated with increased aortic pulse wave velocity in adults. Am J Hypertens 22:74–79

    Article  PubMed  CAS  Google Scholar 

  10. Cernadas MR et al (1998) Expression of constitutive and inducible nitric oxide synthases in the vascular wall of young and aging rats. Circ Res 83:279–286

    PubMed  CAS  Google Scholar 

  11. Wang M, Monticone R, Lakatta E (2010) Arterial aging: a journey into subclinical arterial disease. Curr Opin Nephrol Hypertens 19:201–207

    Article  PubMed  CAS  Google Scholar 

  12. Pearson JD, Morrell CH, Brant LJ, Landis PK, Fleg JL (1997) Age-associated changes in blood pressure in a longitudinal study of healthy men and women. J Gerontol A Biol Sci Med Sci 52:M177–M183

    Article  PubMed  CAS  Google Scholar 

  13. Roman MJ et al (2009) High central pulse pressure is independently associated with adverse cardiovascular outcome the strong heart study. J Am Coll Cardiol 54:1730–1734

    Article  PubMed  Google Scholar 

  14. Vaitkevicius PV, Fleg JL, Engel JH et al (1993) Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 88:1456–1462

    PubMed  CAS  Google Scholar 

  15. Mitchell GF et al (2004) Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham heart study. Hypertension 43:1239–1245

    Article  PubMed  CAS  Google Scholar 

  16. Willum-Hansen T, Staessen JA, Torp-Pedersen C et al (2006) Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 113:664–670

    Article  PubMed  Google Scholar 

  17. Weber T et al (2005) Increased arterial wave reflections predict severe cardiovascular events in patients undergoing percutaneous coronary interventions. Eur Heart J 26:2657–2663

    Article  PubMed  Google Scholar 

  18. Lam CSP, Borlaug BA, Kane GC et al (2009) Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation 119:2663–2670

    Article  PubMed  Google Scholar 

  19. Kovacs G, Berghold A, Scheidl S, Olschewski H (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34:888–894

    Article  PubMed  CAS  Google Scholar 

  20. Linzbach AJ, Akuamoa-Boateng E (1973) Changes in the aging human heart. I. Heart weight in the aged. Klin Wochenschr 51:156–163

    Article  PubMed  CAS  Google Scholar 

  21. Kitzman DW, Scholz DG, Hagen PT, Ilstrup DM, Edwards WD (1988) Age-related changes in normal human hearts during the first 10 decades of life. Part II (Maturity): a quantitative anatomic study of 765 specimens from subjects 20–99 years old. Mayo Clin Proc 63:137–146

    PubMed  CAS  Google Scholar 

  22. Olivetti G, Giordano G, Corridi D et al (1995) Gender differences and aging: effects in the human heart. J Am Coll Cardiol 26:1068–1079

    Article  PubMed  CAS  Google Scholar 

  23. Hees PS, Fleg JL, Lakatta EG, Shapiro EP (2002) Left ventricular remodeling with age in normal men versus women: novel insights using three-dimensional magnetic resonance imaging. Am J Cardiol 90:1231–1236

    Article  PubMed  Google Scholar 

  24. Cheng S, Fernandes VRS, Bluemke DA et al (2009) Age-related left ventricular remodeling and associated risk for cardiovascular outcomes. The multi-ethnic study of atherosclerosis. Circulation Cardiovasc Imaging 2:191–198

    Article  Google Scholar 

  25. Burgess ML, McCrea JC, Hedrick HL (2001) Age-associated changes in cardiac matrix and integrins. Mech Ageing Dev 122:1739–1756

    Article  PubMed  CAS  Google Scholar 

  26. Bergmann O et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  27. Eghbali M, Eghbali M, Robinson TF, Seifter S, Blumenfeld OO (1989) Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res 23:723–729

    Article  PubMed  CAS  Google Scholar 

  28. Lakatta EG, Yin FC (1982) Myocardial aging: functional alterations and related cellular mechanisms. Am J Physiol 242:H927–H941

    PubMed  CAS  Google Scholar 

  29. Lakatta EG (1993) Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 73:413–467

    PubMed  CAS  Google Scholar 

  30. Fleg JL, O’Connor FC, Gerstenblith G et al (1995) Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J Appl Physiol 78:890–900

    PubMed  CAS  Google Scholar 

  31. Lakatta EG, Gerstenblith G, Angell CS et al (1975) Prolonged contraction duration in aged myocardium. J Clin Invest 55:61–68

    Article  PubMed  CAS  Google Scholar 

  32. Fleg JL, Lakatta EG (2008) Normal aging of the cardiovascular system. In: Aronow WS, Fleg JL (eds) Cardiovascular disease in the elderly, 4th edn. Informa Healthcare USA, Inc., New York, pp 1–43

  33. Downes TR, Nomeir AM, Smith KM, Stewart KP, Little WC (1989) Mechanism of altered pattern of left ventricular filling with aging in subjects without cardiac disease. Am J Cardiol 64:523–527

    Article  PubMed  CAS  Google Scholar 

  34. Schulman SP, Lakatta EG, Fleg JL et al (1992) Age-related decline in left ventricular filling at rest and exercise. Am J Physiol 263:H1932–H1938

    PubMed  CAS  Google Scholar 

  35. Boyd AC, Schiller NB, Leung D, Ross DL, Thomas L (2011) Atrial dilation and altered function are mediated by age and diastolic function but not before the eighth decade. J Am Coll Cardiol Img 4:234–242

    Google Scholar 

  36. Hees PS, Fleg JL, Dong S-J et al (2004) MRI and echocardiographic assessment of the diastolic dysfunction of normal aging: altered LV pressure decline or load? Am J Physiol Heart Circ Physiol 286:H782–H788

    Article  PubMed  CAS  Google Scholar 

  37. Froehlich JP, Lakatta EG, Beard E et al (1978) Studies of sarcoplasmic reticulum function and contraction duration in young and aged rat myocardium. J Mol Cell Cardiol 10:427–438

    Article  PubMed  CAS  Google Scholar 

  38. Oh JK, Hatle L, Tajik AJ, Little WC (2006) Diastolic heart failure can be diagnosed by comprehensive two-dimensional and Doppler echocardiography. J Am Coll Cardiol 47:500–506

    Article  PubMed  Google Scholar 

  39. Tsang TSM, Gersh BJ, Appleton CP et al (2002) Left ventricular diastolic dysfunction as a predictor of the first nonvalvular atrial fibrillation in 840 elderly men and women. J Am Coll Cardiol 40:1636–1644

    Article  PubMed  Google Scholar 

  40. Hachamovitch R, Wicker P, Capasso JM, Anversa P (1989) Alterations of coronary blood flow and reserve with aging in Fischer 344 rats. Am J Physiol 256:H66–H73

    PubMed  CAS  Google Scholar 

  41. Talbot LA, Metter EJ, Fleg JL (2000) Leisure-time physical activities and their relationship to cardiorespiratory fitness in healthy men and women 18–95 years old. Med Sci Sports Exer 32:417–425

    Article  CAS  Google Scholar 

  42. Fleg JL, Morrell CH, Bos AG et al (2005) Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 112:674–682

    Article  PubMed  Google Scholar 

  43. Fried LP, Taugen CM, Walston J, For the CHS Collaborative Research Group et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol 56A:M158–M166

    Google Scholar 

  44. Huang G, Gibson CA, Tran ZV et al (2005) Controlled endurance exercise training and VO2max changes in older adults: a meta-analysis. Prev Cardiol 8:217–225

    Article  PubMed  Google Scholar 

  45. Schulman SP, Fleg JL, Goldberg AP et al (1996) Continuum of cardiovascular performance across a broad range of fitness levels in healthy older men. Circulation 94:359–367

    PubMed  CAS  Google Scholar 

  46. Tanaka H, DeSouza CA, Seals DR (1998) Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol 18:127–132

    Article  PubMed  CAS  Google Scholar 

  47. Woo JS, Derleth C, Stratton JR et al (2006) The influence of age, gender, and training on exercise efficiency. J Am Coll Cardiol 47:1049–1057

    Article  PubMed  Google Scholar 

  48. Fleg JL, Schulman SP, Gerstenblith G et al (1993) Additive effects of age and silent myocardial ischemia on the left ventricular response to upright cycle exercise. J Appl Physiol 75:499–504

    PubMed  CAS  Google Scholar 

  49. Fleg JL, Tzankoff SP, Lakatta EG (1985) Age-related augmentation of plasma catecholamines during dynamic exercise in healthy males. J Appl Physiol 59:1033–1039

    PubMed  CAS  Google Scholar 

  50. White M, Roden R, Minobe W et al (1994) Age-related changes in beta- adrenergic neuroeffector systems in the human heart. Circulation 90:1225–1238

    PubMed  CAS  Google Scholar 

  51. Correia LCL, Lakatta EG, O’Connor FC et al (2002) Attenuated cardiovascular reserve during prolonged submaximal exercise in healthy older subjects. J Am Coll Cardiol 40:1290–1297

    Article  PubMed  Google Scholar 

  52. Fleg JL, Schulman S, O’Connor F et al (1994) Effects of acute β-adrenergic receptor blockade on age-associated changes in cardiovascular performance during dynamic exercise. Circulation 90:2333–2341

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome L. Fleg.

Additional information

Disclaimer: The views expressed in this review are those of the authors and do not necessarily represent those of the National Institutes of Health or the Department of Health and Human Services.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleg, J.L., Strait, J. Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease. Heart Fail Rev 17, 545–554 (2012). https://doi.org/10.1007/s10741-011-9270-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-011-9270-2

Keywords

Navigation