Skip to main content

Squeezing and QM Techniques in GW Interferometers

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

Interferometric gravitational wave detectors are limited by quantum noise over a large fraction of the observational band. Therefore any method to mitigate quantum noise would significantly improve their sensitivity. In this section we introduce the interferometer standard quantum limit, and we give an overview of the theoretical models and experimental methods so far developed to surpass it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miao H, Adhikari RX, Ma Y, Pang B, Chen Y (2017) Towards the fundamental quantum limit of linear measurements of classical signals. Phys Rev Lett 119:050801

    Article  ADS  Google Scholar 

  2. Tsang M, Wiseman HM, Caves CM (2011) Fundamental quantum limit to waveform estimation. Phys Rev Lett 106:090401

    Article  ADS  Google Scholar 

  3. Walls DF, Milburn G (2008) Quantum optics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  4. Caves CM, Schumaker BL (1985) New formalism for two-photon quantum optics. I – Quadrature phases and squeezed states. II – Mathematical foundation and compact notation. Phys Rev A 31:3068

    Google Scholar 

  5. Miao H (2010) Exploring macroscopic quantum mechanics in optomechanical devices, PhD University of Western Australia

    Google Scholar 

  6. Bachor H-A, Ralph TC (2004) Guide to experiments in quantum optics. Wiley-VCH, Weinheim

    Book  Google Scholar 

  7. Glauber RJ (1963) Photon correlations. Phys Rev Lett 10:84

    Article  MathSciNet  ADS  Google Scholar 

  8. Glauber RJ (1963) The quantum theory of optical coherence. Phys Rev 130:2529

    Article  MathSciNet  ADS  Google Scholar 

  9. Glauber RJ (1963) Coherent and inchoherent states of radiation field. Phys Rev 131:2766

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Wigner EP (1932) On the quantum correction for thermodynamic equilibrium. Phys Rev 40:749

    Article  MATH  ADS  Google Scholar 

  11. Leonhardt U (1997) Measuring the quantum state of light. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  12. Dwyer S et al (2013) Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light. Opt Express 21:19047

    Article  ADS  Google Scholar 

  13. Dwyer SE (2013) Quantum noise reduction using squeezed states in LIGO. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  14. McKenzie K, Mikhailov E, Goda K, Lam PK, Grosse N, Gray M, Mavalvala N, McClelland D (2005) Quantum noise locking. J Opt B 7:S421S428

    Google Scholar 

  15. Takeno Y, Yukawa M, Yonezawa H, Furusawa A (2007) Observation of − 9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt Exp 15:7

    Google Scholar 

  16. Vahlbruch H et al (2006) Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys Rev Lett 97:011101

    Article  ADS  Google Scholar 

  17. Yuen HP, Chan VWS (1983) Noise in homodyne and heterodyne detection. Opt Lett 8:177

    Article  ADS  Google Scholar 

  18. McKenzie K, Gray MB, Lam PK, McClelland DE (2007) Technical limitations to homodyne detection at audio frequencies. Appl Opt 46:3389

    Article  ADS  Google Scholar 

  19. Stefszky MS, Mow-Lowry CM, Chua SSY, Shaddock DA, Buchler BC, Vahlbruch H, Khalaidovski A, Schnabel R, Lam PK, McClelland DE (2013) Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class Quant Grav 29:145015

    Article  ADS  Google Scholar 

  20. Steinlechner S et al (2015) Local-oscillator noise coupling in balanced homodyne readout for advanced gravitational wave detectors. Phys Rev D 92:072009

    Article  ADS  Google Scholar 

  21. Yang W, Jin X, Yu X, Zheng Y, Peng K (2017) Dependence of measured audio-band squeezing level on local oscillator intensity noise. Opt Express 25:24462

    Google Scholar 

  22. Grote H, Weinert M, Adhikari RX, Affeldt C, Kringel V, Leong J, Lough J, Lück H, Schreiber E, Strain KA, Vahlbruch H, Wittel H (2016) High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors. Opt Express 24:20107

    Article  ADS  Google Scholar 

  23. Vahlbruch H, Mehmet M, Danzmann K, Schnabel R (2016) Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys Rev Lett 117:110801

    Article  ADS  Google Scholar 

  24. Reitze D et al (2019) Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. arXiv preprint arXiv:1907.04833

    Google Scholar 

  25. Mansell GL, McRae TG, Altin PA, Yap MJ, Ward RL, Slagmolen BJJ, Shaddock DA, McClelland DE (2018) Observation of squeezed light in the 2 μm region. Phys Rev Lett 120:203603

    Article  ADS  Google Scholar 

  26. Fritschel P, Evans M, Frolov V (2014) Balanced homodyne readout for quantum limited gravitational wave detectors. Opt Express 222:4224

    Article  ADS  Google Scholar 

  27. The LIGO collaboration (2018) Instrument Science White Paper, LIGO-T1800133

    Google Scholar 

  28. Hild S, Grote H, Degallaix J, Chelkowski S, Danzmann K, Freise A, Hewitson M, Hough J, Luck H, Prijatelj M, Strain KA, Smith JR, Willke B (2009) DC-readout of a signal-recycled gravitational wave detector. Class Quant Grav 26:055012

    Article  ADS  Google Scholar 

  29. Slusher R, Hollberg L, Yurke B, Mertz J, Valley J (1985) Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys Rev Lett 55:2409

    Article  ADS  Google Scholar 

  30. Shelby RM, Levenson MD, Perlmutter SH, DeVoe RG, Walls DF (1986) Broad-band parametric deamplification of quantum noise in an optical fiber. Phys Rev Lett 57:691

    Article  ADS  Google Scholar 

  31. Gerry CC, Knight PL (2004) Introductory quantum optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Wu L-A, Kimble HJ, Hall JL, Wu H (1986) Generation of squeezed states by parametric down conversion. Phys Rev Lett 57:2520

    Article  ADS  Google Scholar 

  33. Machida S, Yamamoto Y, Itaya Y (1987) Observation of amplitude squeezing in a constant-current–driven semiconductor laser. Phys Rev Lett 58:1000

    Article  ADS  Google Scholar 

  34. McCormick CF, Boyer V, Arimondo E, Lett PD (2007) Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt Lett 32:178

    Article  ADS  Google Scholar 

  35. Levenson M, Shelby R (1985) Experimentalists’ difficulties in optical squeezed state generation. In: Hänsch T, Shen Y (eds) Laser spectroscopy VII. Springer series in optical sciences, vol 49 Springer, Berlin, p 250

    Google Scholar 

  36. Galatola P, Lugiato LA, Porreca MG, Tombesi P, Leuchs G (1991) System control by variation of the squeezing phase. Opt Commun 85:95

    Article  ADS  Google Scholar 

  37. Slusher RE, Grangier P, LaPorta A, Yurke B, Potasek MJ (1987) Pulsed squeezed light. Phys Rev Lett 59:2566

    Article  ADS  Google Scholar 

  38. Finger MA, Iskhakov TS, Joly NY, Chekhova MV, Russell PSJ (2015) Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum. Phys Rev Lett 115:143602

    Article  ADS  Google Scholar 

  39. Vogl U, Joly NY, Russell PSJ, Marquardt C, Leuchs G (2015) Proceedings of conference on lasers and electo-optics/European quantum electronics conference (CLEO/Europe-EQEC), Munich, 21–25 June

    Google Scholar 

  40. Schottky W, Spehnke E (1937) Wiss. Veröffentlichungen aus den Siemens-Werken 16:1

    Google Scholar 

  41. Richardson WH, Yamamoto Y (1991) Quantum correlation between the junction-voltage fluctuation and the photon-number fluctuation in a semiconductor laser. Phys Rev Lett 66:1963

    Article  ADS  Google Scholar 

  42. Bramati A, Jost V, Marin F, Giacobino E (1997) Quantum noise models for semiconductor lasers: is there a missing noise source? J Mod Opt 44:1929

    Article  ADS  Google Scholar 

  43. Poizat J-P, Chang T, Ripoll O, Grangier P (1998) Spatial quantum noise of laser diodes. J Opt Soc Am B 15:1757

    Article  ADS  Google Scholar 

  44. Polzik ES, Carri J, Kimble HJ (1992) Spectroscopy with squeezed light. Phys Rev Lett 68:3020

    Article  ADS  Google Scholar 

  45. Breitenbach G, Schiller S, Mlynek J (1997) Measurement of the quantum states of squeezed light. Nature 387:471

    Article  ADS  Google Scholar 

  46. Lam PK, Ralph TC, Buchler BC, McClelland DE, Bachor H-A, Gao J (1999) Optimization and transfer of vacuum squeezing from an optical parametric oscillator. J Opt B Quant Semiclass Opt 1:469

    Article  ADS  Google Scholar 

  47. Schneider K, Lang M, Mlynek J, Schiller S (1998) Generation of strongly squeezed continuous-wave light at 1064 nm. Opt Express 2:59

    Article  ADS  Google Scholar 

  48. Suzuki S, Yonezawa H, Kannari F, Sasaki M, Furusawa A (2006) 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4. Appl Phys Lett 89:061116

    Article  ADS  Google Scholar 

  49. Takeno Y, Yukawa M, Yonezawa H, Furusawa A (2007) Observation of − 9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt Express 15:4321

    Google Scholar 

  50. Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R (2008) Observation of squeezed light with 10-dB quantum-noise reduction. Phys Rev Lett 100:033602

    Article  ADS  Google Scholar 

  51. Eberle T, Steinlechner S, Bauchrowitz J, Händchen V, Vahlbruch H, Mehmet M, Müller-Ebhardt H, Schnabel R (2010) Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys Rev Lett 104:251102

    Article  ADS  Google Scholar 

  52. Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R (2011) Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB. Opt Express 36:25763

    Google Scholar 

  53. Chua SSY, Stefszky MS, Mow-Lowry CM, Buchler BC, Dwyer S, Shaddock DA, Lam PK, McClelland DE (2011) Back scatter tolerant squeezed light source for advanced gravitational-wave detectors. Opt Lett 36:4680

    Article  ADS  Google Scholar 

  54. Stefszky MS, Mow-Lowry CM, Chua SSY, Shaddock DA, Buchler BC, Vahlbruch H, Khalaidovski A, Schnabel R, Lam PK, McClelland DE (2018) Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class Quant Grav 36:015014

    Google Scholar 

  55. Mehmet M, Vahlbruch H (2018) High-efficiency squeezed light generation for gravitational wave detectors. Class Quant Grav 36:015014

    Article  ADS  Google Scholar 

  56. Caves CM (1981) Quantum-mechanical noise in an interferometer. Phys Rev D 23:8

    Article  Google Scholar 

  57. Drever RWP (1983) In: N Deruelle N, Piran T (eds) Gravitational radiation, Amsterdam, North-Holland, pp 321–38

    Google Scholar 

  58. Meers BJ (1988) Recycling in laser-interferometric gravitational-wave detectors. Phys Rev D 38:2317

    Article  ADS  Google Scholar 

  59. Vinet JY, Meers B, Man C, Brillet A (1988) Optimization of long-baselineoptical interferometers for gravitational-wave detection. Phys Rev D 38:433

    Article  ADS  Google Scholar 

  60. Mizuno J, Strain KA, Nelson PG, Chen JM, Schilling R, Rudiger A, Winkler W, Danzmann K (1993) Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors. Phys Lett A 175:273

    Article  ADS  Google Scholar 

  61. Mizuno J (1995) Comparison of optical configurations for laser-interferometric gravitational-wave detectors. PhD thesis, Universitat Hannover

    Google Scholar 

  62. Heinzel G, Mizuno J, Schilling R, Winkler W, Rüdiger A, Danzmann K (1996) An experimental demonstration of resonant sideband extraction for laser-interferometric gravitational wave detectors. Phys Lett A 217:305–314

    Article  ADS  Google Scholar 

  63. Buonanno A, Chen Y (2001) Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors. PRD 64:042006

    Article  ADS  Google Scholar 

  64. Buonanno A, Chen Y (2002) Signal recycled laser-interferometer gravitational-wave detectors as optical springs. Phys Rev D 65:042001

    Article  ADS  Google Scholar 

  65. Heinzel G, Strain KA, Mizuno J, Skeldon KD, Willke B, Winkler W, Schilling R, Rüdiger A, Danzmann K (1998) Experimental demonstration of a suspended dual recycling interferometer for gravitational wave detection. Phys Rev Lett 81:5493

    Article  ADS  Google Scholar 

  66. Affeldt C, Danzmann K, Dooley KL, Grote H, Hewitson M, Hild S, Hough J, Leong J, Lück H, Prijatelj M (2014) Advanced techniques in GEO600. Class Quant Grav 31:224002

    Article  ADS  Google Scholar 

  67. Martynov DV et al (2016) Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. PRD 93:112004

    Article  ADS  Google Scholar 

  68. The Virgo Collaboration (2019) Advanced Virgo Plus Phase I – Design Report, Virgo-Technical Documentation System, Report No. VIR-0596A-19. https://tds.virgo-gw.eu/?content=3&r=15777

  69. Harms J, Chen Y, Chelkowski S, Franzen A, Vahlbruch H, Danzmann K, Schnabel R (2003) Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors. Phys Rev D 68:042001

    Article  ADS  Google Scholar 

  70. Buonanno A, Chen Y (2003) Scaling law in signal recycled laser-interferometer gravitational-wave detectors. Phys Rev D 67:062002

    Article  ADS  Google Scholar 

  71. Buonanno A, Chen Y (2004) Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers. Phys Rev D 69:102004

    Article  ADS  Google Scholar 

  72. Kimble HJ, Levin Y, Matsko AB, Thorne KS, Vyatchanin SP (2001) Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys Rev D 65:022002

    Article  ADS  Google Scholar 

  73. Kwee P, Miller J, Isogai T, Barsotti L, Evans M (2014) Decoherence and degradation of squeezed states in quantum filter cavities. Phys Rev D 90:062006

    Article  ADS  Google Scholar 

  74. Purdue P, Chen Y (2002) Practical speed meter designs for quantum nondemolition gravitational-wave interferometers. Phys Rev D 66:122004

    Article  ADS  Google Scholar 

  75. Chelkowski S, Vahlbruch H, Hage B, Franzen A, Lastzka N, Danzmann K, Schnabel R (2005) Experimental characterization of frequency-dependent squeezed light. Phys Rev A 71:013806

    Article  ADS  Google Scholar 

  76. Oelker E et al (2016) Audio-band frequency-dependent squeezing for gravitational-wave detectors. Phys Rev Lett 116:041102

    Article  ADS  Google Scholar 

  77. Zhao Y et al (2020) Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors. Phys Rev Lett 124:171101

    Article  ADS  Google Scholar 

  78. ET design report update 2020, https://apps.et-gw.eu/tds/?content=3&r=17245

  79. Jones P, Zhang T, Miao H, Freise A (2020) Implications of the quantum noise target for the Einstein Telescope infrastructure design. Phys Rev D 101:082002

    Article  ADS  Google Scholar 

  80. Wade AR, Mansell GL, Chua SY, Slagmolen BJJ, Shaddock DA, McClelland DE (2015) A squeezed light source operated under high vacuum. Nat Sci Rep 5:18052

    Article  ADS  Google Scholar 

  81. Arcenese F et al (Virgo Collaboration) (2019) Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light. Phys Rev Lett 123:231108

    Google Scholar 

  82. Tse M et al (2019) Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys Rev Lett 123:231107

    Article  ADS  Google Scholar 

  83. Chua SSY (2013) Quantum enhancement of a 4 km laser interferometer gravitational-wave detector. PhD thesis, Physics Department, Australian National University, Canberra

    Google Scholar 

  84. Lough J et al (2020) First demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory, arXiv:2005.10292

    Google Scholar 

  85. Chua SSY et al (2014) Quantum squeezed light in gravitational-wave detectors. Class Quant Grav 31:035017

    Article  ADS  Google Scholar 

  86. McKenzie K, Grosse N, Bowen W, Whitcomb S, Gray M, McClelland D, Lam PK (2004) Squeezing in the audio gravitational-wave detection band. Phys Rev Lett 93:161105

    Article  ADS  Google Scholar 

  87. Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R (2007) Quantum engineering of squeezed states for quantum communication and metrology. New J Phys 9:371

    Article  Google Scholar 

  88. Flanagan FE, Thorne KS (1994) LIGO-T940063-00-R 7, 11

    Google Scholar 

  89. Conti L, Bertolini A, Chiummo A, Chua S, Fiori I, Genin E, Harms J, Leonardi M, Pillant G, Zendri JP (2017) Backscattering noise from Advanced Virgo Squeezer, VIR-0496A-17

    Google Scholar 

  90. Stover JC (2012) Optical scattering: measurement and analysis, 3rd edn. SPIE, Bellingham

    Google Scholar 

  91. Siegman AE (1986) Lasers. University Science Books, Sausalito

    Google Scholar 

  92. Padilla C et al (2014) Low scatter and ultra-low reflectivity measured in a fused silica window. Appl Opt 53(7):1315–1321

    Article  ADS  Google Scholar 

  93. Genin E, Chiummo A, Pillant G, Gouaty R (2017) CRQ 2017/007 SQZ: in-air and in-vacuum low-loss Faraday isolators, VIR-0432A-17

    Google Scholar 

  94. Fritschel P (2006) Backscattering from the AS port: enhanced and advanced LIGO, LIGO-T060303-00-D

    Google Scholar 

  95. Genin E, Mantovani M, Pillant G, De Rossi C, Pinard L, Michel C, Gosselin M, Casanueva J (2018) Vacuum-compatible low-loss Faraday isolator for efficient squeezed-light injection in laser-interferometer-based gravitational-wave detectors. Appl Opt 57:9705

    Article  ADS  Google Scholar 

  96. Schreiber E (2018) Gravitational-wave detection beyond the quantum shot-noise limit – the integration of squeezed light in GEO600. Ph.D. thesis, Leibniz Universitat Hannover

    Google Scholar 

  97. Capocasa E, Guo Y, Eisenmann M, Zhao Y, Tomura A, Arai K, Aso Y, Marchió M, Pinard L, Prat P, Somiya K, Schnabel R, Tacca M, Takahashi R, Tatsumi D, Leonardi M, Barsuglia M, Flaminio R (2018) Measurement of optical losses in a high-finesse 300 m filter cavity for broadband quantum noise reduction in gravitational-wave detectors. Phys Rev D 98:022010

    Article  ADS  Google Scholar 

  98. Capocasa E, Barsuglia M, Degallaix J, Pinard L, Straniero N, Schnabel R, Somiya K, Aso Y, Tatsumi D, Flaminio R (2016) Estimation of losses in a 300 m filter cavity and quantum noise reduction in the KAGRA gravitational-wave detector. Phys Rev D 93:082004

    Article  ADS  Google Scholar 

  99. Evans M, Barsotti L, Kwee P, Harms J, Miao H (2013) Realistic filter cavities for advanced gravitational wave detectors. Phys Rev D 88:022002

    Article  ADS  Google Scholar 

  100. Pinard L, Michel C, Sassolas B, Balzarini L, Degallaix J, Dolique V, Flaminio R, Forest D, Granata M, Lagrange B et al (2017) Mirrors used in the LIGO interferometers for first detection of gravitational waves. Appl Opt 56:C11

    Article  Google Scholar 

  101. Isogai T, Miller J, Kwee P, Barsotti L, Evans M (2013) Loss in long-storage-time optical cavities. Opt Express 21:30114

    Article  ADS  Google Scholar 

  102. Magana-Sandoval F, Vo T, Vander Hyde D, Sanders JR, Ballmer SW (2019) Sensing optical cavity mismatch with a mode-converter and quadrant photodiode. Phys Rev D 100:102001

    Article  ADS  Google Scholar 

  103. Ciobanu AA, Brown DD, Veitch PJ, Ottaway DJ (2020) Mode matching error signals using radio-frequency beam shape modulation. Appl Opt 59:9884

    Article  ADS  Google Scholar 

  104. Cao HT, Brooks A, Ng SWS, Ottaway D, Perreca A, Richardson JW, Chaderjian A, Veitch PJ (2020) High dynamic range thermally actuated bimorph mirror for gravitational wave detectors. Appl Opt 59:2784

    Article  ADS  Google Scholar 

  105. Cao HT, Ng SWS, Noh M, Brooks A, Matichard F, Veitc PJ (2020) Enhancing the dynamic range of deformable mirrors with compression bias. Opt Exp 28:38480

    Article  Google Scholar 

  106. Perreca A, Brooks AF, Richardson JW, Toyra D (2020) An analysis and visualization of the output mode-matching requirements for squeezing in Advanced LIGO and future gravitational wave detectors, arXiv:2001.10132v2

    Google Scholar 

  107. Mehmet M, Vahlbruch H (2019) High-efficiency squeezed light generation for gravitational wave detectors. Class Quant Grav 36:015014

    Article  ADS  Google Scholar 

  108. McKenzie K, Shaddock DA, McClelland D, Buchler BC, Lam PK (2002) Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection. Phys Rev Lett 88:231102

    Article  ADS  Google Scholar 

  109. Abadie J et al (2011) A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat Phys 7:962–965

    Article  Google Scholar 

  110. Arcenese F et al (Virgo Collaboration) (2019) Increasing the astrophysical reach of the Advanced Virgo detector via the application of squeezed vacuum states of light. Phys Rev Lett 123:231108

    Google Scholar 

  111. Yu H, McCuller L, Tse M et al (2020) Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature 583:43

    Article  ADS  Google Scholar 

  112. Unruh WG (1983) Quantum optics, experimental gravitation, and measurement theory. In: Meystre P, Scully MO (eds) Springer, NATO advanced science institutes series book series B, NSSB, vol 94

    Google Scholar 

  113. Zhao Y, Aritomi N, Capocasa E, Leonardi M, Eisenmann M, Guo Y, Polini E, Tomura A, Arai K, Aso Y, Huang Y-C, Lee R-K, Lück H, Miyakawa O, Prat P, Shoda A, Tacca M, Takahashi R, Vahlbruch H, Vardaro M, Wu C-M, Barsuglia M, Flaminio R (2020) Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors. Phys Rev Lett 124:171101

    Article  ADS  Google Scholar 

  114. McCuller L, Whittle C, Ganapathy D, Komori K, Tse M, Fernandez-Galiana A, Barsotti L, Fritschel P, MacInnis M, Matichard F, Mason K, Mavalvala N, Mittleman R, Yu H, Zucker ME, Evans M (2020) Frequency-dependent squeezing for Advanced LIGO. Phys Rev Lett 124:171102

    Article  ADS  Google Scholar 

  115. Vyatchanin SP, Matsko AB (1993) Quantum limit on force measurements. JETP 77:218

    ADS  Google Scholar 

  116. Vyatchanin SP, Zubova EA (1995) Quantum variation measurement of a force. Phys Lett A 201:269

    Article  ADS  Google Scholar 

  117. Chen Y, Danilishin SL, Khalili FY, Müller-Ebhardt H (2011) QND measurements for future gravitational-wave detectors. Gen Rel Rel Grav 43:671

    Article  MATH  ADS  Google Scholar 

  118. Braginsky VB, Khalili FJ (1990) Gravitational wave antenna with QND speed meter. Phys Lett A 147:251–256

    Article  ADS  Google Scholar 

  119. Danilishin SL, Khalili FY (2012) Quantum measurement theory in gravitational-wave detectors. Living Rev Relativ. https://doi.org/10.12942/lrr-2012-5

  120. Khalili FY (2002) Quantum speedmeter and laser interferometric gravitational-wave antennae, arXive:gr-gc/0211088

    Google Scholar 

  121. Chen Y (2003) Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector. Phys Rev D 67:122004

    Article  ADS  Google Scholar 

  122. Danilishin SL, Khalili FY, Miao H (2019) Advanced quantum techniques for future gravitational-wave detectors. Living Rev Relat. https://doi.org/10.1007/s41114-019-0018-y

  123. Gräf C et al (2014) Design of a speed meter interferometer proof-of-principle experiment. Class Quantum Grav 31:215009

    Article  ADS  Google Scholar 

  124. Ma Y, Miao H, Pang BH, Evans M, Zhao C, Harms J, Schnabel R, Chen Y (2017) Proposal for gravitational wave detection beyond the standard quantum limit through EPR entanglement. Nat Phys 13:776

    Article  Google Scholar 

  125. Südbeck J, Steinlechner S, Korobko M, Schnabel R (2020) Demonstration of interferometer enhancement through Einstein–Podolsky–Rosen entanglement. Nat Photon 14:240

    Article  ADS  Google Scholar 

  126. Yap MJ, Altin P, McRae TG, Slagmolen BJJ, Ward RL, McClelland DE (2020) Generation and control of frequency-dependent squeezing via Einstein–Podolsky–Rosen entanglement. Nat Photon 14:223

    Article  ADS  Google Scholar 

  127. Corbitt T, Mavalvala N, Whitcomb S (2004) Optical cavities as amplitude filters for squeezed fields. Phys Rev D 70:022002

    Article  ADS  Google Scholar 

  128. Khalili FY (2008) Increasing future gravitational-wave detectors’ sensitivity by means of amplitude filter cavities and quantum entanglement. Phys Rev D 77:062003

    Article  ADS  Google Scholar 

  129. Rehbein H, Müller-Ebhardt H, Somiya K, Danilishin SL, Schnabel R, Danzmann K, Chen Y (2008) Double optical spring enhancement for gravitational-wave detectors. Phys Rev D 78:062003

    Article  ADS  Google Scholar 

  130. Somiya K, Kataoka Y, Kato J, Saito N, Yano K (2016) Parametric signal amplification to create a stiff optical bar. Phys Lett A 380:521

    Article  ADS  Google Scholar 

  131. Korobko M, Khalili FY, Schnabel R (2017) Engineering the optical spring via intra-cavity optical-parametric amplification. Phys Lett A 382:2238

    Article  ADS  Google Scholar 

  132. Salit M, Shahriar MS (2010) Enhancement of sensitivity and bandwidth of gravitational wave detectors using fast-light-based white light cavities. J Opt 12:104014

    Article  ADS  Google Scholar 

  133. Zhou M, Zhou Z, Shahriar SM (2015) Quantum noise limits in white-light-cavity-enhanced gravitational wave detectors. Phys Rev D92:082002

    ADS  Google Scholar 

  134. Korobko M, Kleybolte L, Ast S, Miao H, Chen Y, Schnabel R (2017) Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation. Phys Rev Lett 118:143601

    Article  ADS  Google Scholar 

  135. Korobko M, Ma Y, Chen Y, Schnabel R (2019) Quantum expander for gravitational-wave observatories. Light Sci Appl 8:118

    Article  Google Scholar 

  136. Miao H, Ma Y, Zhao C, Chen Y (2015) Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters. Phys Rev Lett 115:211104

    Article  ADS  Google Scholar 

  137. Khalili F, Polzik E (2018) Overcoming the SQL in gravitational wave detectors using spin systems with negative effective mass. Phys Rev Lett 121:031101

    Article  ADS  Google Scholar 

  138. Møller CB, Thomas RA, Vasilakis G, Zeuthen E, Tsaturyan Y, Balabas M, Jensen K, Schliesser A, Hammerer K, Polzik ES (2017) Quantum back-action-evading measurement of motion in a negative mass reference frame. Nature 547:191

    Article  ADS  Google Scholar 

  139. Tsang M, Caves CM (2010) Coherent quantum-noise cancellation for optomechanical sensors. Phys Rev Lett 105:123601

    Article  ADS  Google Scholar 

  140. Wimmer MH, Steinmeyer D, Hammerer K, Heurs M (2010) Coherent cancellation of backaction noise in optomechanical force measurements. Phys Rev Lett 105:123601

    Article  Google Scholar 

  141. Aritomi N, Leonardi M, Capocasa E, Zhao Y, Flaminio R (2020) Control of a filter cavity with coherent control sidebands. Phys Rev D 102:042003

    Article  ADS  Google Scholar 

  142. Y. Drori et al. Scattering loss in precision metrology due to mirror roughness. https://arxiv.org/abs/2201.05640

  143. L. McCuller et al. LIGOs quantum response to squeezed states. https://arXiv:2105.12052v1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fiodor Sorrentino or Jean-Pierre Zendri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sorrentino, F., Zendri, JP. (2022). Squeezing and QM Techniques in GW Interferometers. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_9

Download citation

Publish with us

Policies and ethics