Skip to main content
Log in

QND measurements for future gravitational-wave detectors

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit (SQL), a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the SQL significantly over a broad frequency band. Such schemes may be an important component of the design of third-generation detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waldman S.J.: (for the LIGO Science Collaboration): Class. Quantum Gravity 23, S653 (2006)

  2. Acernese F. et al.: Class. Quantum Gravity 23, S635 (2006)

    Article  MATH  ADS  Google Scholar 

  3. Hild S.: (for the LIGO Science Collaboration): Class. Quantum Gravity 23, S643 (2006)

  4. Ando M.: the TAMA Collaboration: Class. Quantum Gravity 22, S881 (2005)

  5. Thorne, K.S.: The scientific case for mature ligo interferometers. LIGO document P000024-00-R. www.ligo.caltech.edu/docs/P/P000024-00.pdf (2000)

  6. Fritschel, P.: Second generation instruments for the laser interferometer gravitational-wave observatory (LIGO). In: Gravitational Wave Detection, Proc. SPIE, vol. 4856-39, p. 282 (2002)

  7. J R Smith for the LIGO Scientific Collaboration. arXiv:0902.0381 (2009)

  8. Acernese F. et al.: J. Phys. Conf. Ser. 32, s223 (2006)

    Article  ADS  Google Scholar 

  9. Willke B. et al.: Class. Quantum Gravity 23, S207 (2006)

    Article  ADS  Google Scholar 

  10. Braginsky V.B., Khalili F.Ya.: Quantum Measurement. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  11. Freise A., Chelkowski S., Hild S., Del Pozzo W., Perreca A., Vecchio A.: Class. Quantum Gravity 26, 085012 (2009)

    Article  ADS  Google Scholar 

  12. Braginsky V.B., Vorontsov Yu.I., Khalili F.Ya.: Sov. Phys. JETP 46, 705 (1977)

    ADS  Google Scholar 

  13. Caves C.M.: Phys. Rev. D 23, 1693 (1981)

    Article  ADS  Google Scholar 

  14. Kimble H.J., Levin Yu., Matsko A.B., Thorne K.S., Vyatchanin S.P.: Phys. Rev. D 65, 022002 (2001)

    Article  ADS  Google Scholar 

  15. Harms J., Chen Y., Chelkowski S., Franzen A., Vahlbruch H., Danzmann K., Schnabel R.: Phys. Rev. D 68, 042001 (2003)

    Article  ADS  Google Scholar 

  16. Buonanno A., Chen Y.: Phys. Rev. D 67, 062002 (2003)

    Article  ADS  Google Scholar 

  17. Unruh, W.G.: In: Meystre, P., Scully, M.O. (eds.) Quantum Optics, Experimental Gravitation, and Measurement Theory, p. 647. Plenum Press, New York (1982)

  18. Khalili, F.Ya.: Doklady Akademii Nauk 294, 602 (1987); see also [10], Chapter 8

    Google Scholar 

  19. Jaekel M.T., Reynaud S.: Europhys. Lett. 13, 301 (1990)

    Article  ADS  Google Scholar 

  20. Pace A.F., Collett M.J., Walls D.F.: Phys. Rev. A 47, 3173 (1993)

    Article  ADS  Google Scholar 

  21. Vyatchanin S.P., Matsko A.B.: Sov. Phys. JETP 83, 690 (1996)

    ADS  Google Scholar 

  22. Arcizet O., Briant T., Heidmann A., Pinard M.: Phys. Rev. A 73, 033819 (2006)

    Article  ADS  Google Scholar 

  23. Purdue P., Chen Y.: Phys. Rev. D 66, 122004 (2002)

    Article  ADS  Google Scholar 

  24. Buonanno A., Chen Y.: Phys. Rev. D 69, 102004 (2004)

    Article  ADS  Google Scholar 

  25. Braginsky V.B., Khalili F.Ya.: Phys. Lett. A 147, 251 (1990)

    Article  ADS  Google Scholar 

  26. Braginsky V.B., Gorodetsky M.L., Khalili F.Ya., Thorne K.S.: Phys. Rev. D 61, 4002 (2000)

    Article  ADS  Google Scholar 

  27. Purdue P.: Phys. Rev. D 66, 022001 (2002)

    Article  ADS  Google Scholar 

  28. Khalili F.Ya., Levin Yu.: Phys. Rev. D 54, 4735 (1996)

    Article  ADS  Google Scholar 

  29. Chen Y.: Phys. Rev. D 67, 122004 (2003)

    Article  ADS  Google Scholar 

  30. Khalili, F.Ya.: arXive:gr-gc/0211088 (2002)

  31. Danilishin S.L.: Phys. Rev. D 69, 102003 (2004)

    Article  ADS  Google Scholar 

  32. Sun K.-X., Fejer M.M., Gustafson E., Shoemaker D., Byer R.L.: Phys. Rev. Lett. 76, 3055 (1996)

    Article  ADS  Google Scholar 

  33. Beyersdorf P., Fejer M.M., Byer R.L.: Opt. Lett. 24, 1112 (1999)

    Article  ADS  Google Scholar 

  34. Traeger S., Beyersdorf P., Goddard L., Gustafson E., Fejer M.M., Byer R.L.: Opt. Lett. 25, 722 (2000)

    Article  ADS  Google Scholar 

  35. Mueller-Ebhardt, H., Somiya, K., Schnabel, R., Danzmann, K., Chen, Y.: Signal-recycled Sagnac interferometer. (2005, unpublished manuscript)

  36. Meers B.J.: Phys. Rev. D 38, 2317 (1988)

    Article  ADS  Google Scholar 

  37. Buonanno A., Chen Y.: Phys. Rev. D 64, 042006 (2001)

    Article  ADS  Google Scholar 

  38. Buonanno A., Chen Y.: Phys. Rev. D 65, 042001 (2002)

    Article  ADS  Google Scholar 

  39. Mueller-Ebhardt, H., Rehbein, H., Li, C., Mino, Y., Somiya, K., Schnabel, R., Danzmann, K., Chen, Y.: arXiv:0903.0798 (2009)

  40. Ju L., Blair D.G., Zhao C.: Rep. Prog. Phys. 63(9), 1317 (2000)

    Article  ADS  Google Scholar 

  41. Braginsky V.B., Khalili F.Ya.: Phys. Lett. A 257, 241 (1999)

    Article  ADS  Google Scholar 

  42. Khalili F.Ya.: Phys. Lett. A 288, 251 (2001)

    Article  ADS  Google Scholar 

  43. Rehbein H., Müller-Ebhardt H., Somiya K., Li C., Schnabel R., Danzmann K., Chen Y.: Phys. Rev. D 76, 062002 (2007)

    Article  ADS  Google Scholar 

  44. Braginsky V.B., Gorodetsky M.L., Khalili F.Ya.: Phys. Lett. A 232, 340 (1997)

    Article  ADS  Google Scholar 

  45. Khalili F.Ya.: Phys. Lett. A 298, 308 (2002)

    Article  ADS  Google Scholar 

  46. Braginsky V.B., Gorodetsky M.L., Khalili F.Ya.: Phys. Lett. A 246, 485 (1998)

    Article  ADS  Google Scholar 

  47. Khalili F.Ya.: Phys. Lett. A 317, 169 (2003)

    Article  ADS  Google Scholar 

  48. Danilishin S.L., Khalili F.Ya.: Phys. Rev. D 73, 022002 (2006)

    Article  ADS  Google Scholar 

  49. Khalili F.Ya.: Phys. Rev. D 76, 102002 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan L. Danilishin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Danilishin, S.L., Khalili, F.Y. et al. QND measurements for future gravitational-wave detectors. Gen Relativ Gravit 43, 671–694 (2011). https://doi.org/10.1007/s10714-010-1060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1060-y

Keywords

Navigation