Skip to main content

Dynamical Formation of MergingStellar-Mass Binary Black Holes

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy
  • 1320 Accesses

Abstract

The astrophysical origin of black hole mergers is one of the most important outstanding questions in gravitational wave astronomy. How do black holes find each other in vast space, form binaries, and get so close to one another that gravitational wave emission can successfully merge them within the present age of the universe? In this chapter we review the dynamical formation channel, where the binary separation is reduced by dynamical processes. These processes are important for mergers in dense stellar clusters, galactic nuclei, mergers in supermassive black hole accretion disks, and mergers in stellar triple and quadruple systems and possibly in the dark matter halo. We introduce a unified framework to interpret the theoretical expectations on the characteristics of these merging binaries such as their gravitational wave frequency, eccentricity, mass, and spins to identify these gravitational wave source populations in merger catalogs. For dynamical merger pathways, we show that GW source catalogs carry information on the escape velocity of the host environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2016) Astrophysical implications of the Binary Black Hole merger GW150914. ApJ 818:L22. https://doi.org/10.3847/2041-8205/818/2/L22

    Article  ADS  Google Scholar 

  2. Abbott BP et al (2019) LIGO Scientific collaboration, Virgo Collaboration: The population of merging compact binaries inferred using gravitational waves through GWTC-3. arXiv e-prints arXiv:2111.03634

    Google Scholar 

  3. Abbott BP et al (2021) LIGO Scientific collaboration, Virgo Collaboration: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv e-prints arXiv:2111.03606.

    Google Scholar 

  4. Antognini JM, Shappee BJ, Thompson TA, Amaro-Seoane P (2014) Rapid eccentricity oscillations and the mergers of compact objects in hierarchical triples. MNRAS 439:1079–1091. https://doi.org/10.1093/mnras/stu039

    Article  ADS  Google Scholar 

  5. Antognini JMO (2015) Timescales of Kozai-Lidov oscillations at quadrupole and octupole order in the test particle limit. MNRAS 452(4):3610–3619. https://doi.org/10.1093/mnras/stv1552

    Article  ADS  Google Scholar 

  6. Antonini F, Chatterjee S, Rodriguez CL, Morscher M et al (2016) Black Hole Mergers and blue stragglers from hierarchical triples formed in globular clusters. ApJ 816:65. https://doi.org/10.3847/0004-637X/816/2/65

    Article  ADS  Google Scholar 

  7. Antonini F, Chatterjee S, Rodriguez CL, Morscher M, Pattabiraman B, Kalogera V, Rasio FA (2016) Black hole mergers and blue stragglers from hierarchical triples formed in globular clusters. ApJ 816(2):65. https://doi.org/10.3847/0004-637X/816/2/65

    Article  ADS  Google Scholar 

  8. Antonini F, Gieles M (2020) Merger rate of black hole binaries from globular clusters: theoretical error bars and comparison to gravitational wave data from GWTC-2. Phys Rev D 102(12):123016. https://doi.org/10.1103/PhysRevD.102.123016

    Article  ADS  Google Scholar 

  9. Antonini F, Gieles M, Gualandris A (2019) Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections. MNRAS 486(4):5008–5021. https://doi.org/10.1093/mnras/stz1149

    Article  ADS  Google Scholar 

  10. Antonini F, Murray N, Mikkola S (2014) Black hole triple dynamics: a breakdown of the orbit average approximation and implications for gravitational wave detections. ApJ 781:45. https://doi.org/10.1088/0004-637X/781/1/45

    Article  ADS  Google Scholar 

  11. Antonini F, Perets HB (2012) Secular evolution of compact binaries near massive black holes: gravitational wave sources and other exotica. ApJ 757:27. https://doi.org/10.1088/0004-637X/757/1/27

    Article  ADS  Google Scholar 

  12. Antonini F, Rasio FA (2016) Merging black hole binaries in galactic nuclei: implications for advanced-LIGO detections. ApJ 831(2):187. https://doi.org/10.3847/0004-637X/831/2/187

    Article  ADS  Google Scholar 

  13. Antonini F, Toonen S, Hamers AS (2017) Binary black hole mergers from field triples: properties, rates, and the impact of stellar evolution. ApJ 841:77. https://doi.org/10.3847/1538-4357/aa6f5e

    Article  ADS  Google Scholar 

  14. Arca-Sedda M, Capuzzo-Dolcetta R (2019) The MEGaN project II. Gravitational waves from intermediate-mass and binary black holes around a supermassive black hole. MNRAS 483(1):152–171. https://doi.org/10.1093/mnras/sty3096

    Article  ADS  Google Scholar 

  15. Arca-Sedda M, Li G, Kocsis B (2021) Order in the chaos. Eccentric black hole binary mergers in triples formed via strong binary-binary scatterings. A&A 650(A):189. https://doi.org/10.1051/0004-6361/202038795

  16. Arca Sedda M, Mapelli M, Spera M, Benacquista M, Giacobbo N (2020) Fingerprints of binary black hole formation channels encoded in the mass and spin of merger remnants. ApJ 894(2):133. https://doi.org/10.3847/1538-4357/ab88b2

    Article  ADS  Google Scholar 

  17. Armitage PJ (2007)Lecture notes on the formation and early evolution of planetary systems. arXiv e-prints astro-ph/0701485

    Google Scholar 

  18. Askar A, Szkudlarek M, Gondek-Rosińska D, Giersz M, Bulik T (2017) MOCCA-SURVEY database – I. Coalescing binary black holes originating from globular clusters. MNRAS 464(1):L36–L40. https://doi.org/10.1093/mnrasl/slw177

    Article  ADS  Google Scholar 

  19. Baibhav V, Berti E, Gerosa D, Mapelli M, Giacobbo N, Bouffanais Y, Di Carlo UN Gravitational-wave detection rates for compact binaries formed in isolation: LIGO/Virgo O3 and beyond. Phys Rev D 100(6):064060. https://doi.org/10.1103/PhysRevD.100.064060

  20. Baibhav V, Gerosa D, Berti E, Wong KWK et al (2020) The mass gap, the spin gap, and the origin of merging binary black holes. Phys Rev D 102(4):043002. https://doi.org/10.1103/PhysRevD.102.043002

    Article  ADS  MathSciNet  Google Scholar 

  21. Banerjee S (2021) Stellar-mass black holes in young massive and open stellar clusters – IV. Updated stellar-evolutionary and black hole spin models and comparisons with the LIGO-Virgo O1/O2 merger-event data. MNRAS 500(3):3002–3026. https://doi.org/10.1093/mnras/staa2392

    Article  ADS  Google Scholar 

  22. Barack L, Cardoso V, Nissanke S, Sotiriou TP, Askar A, Belczynski C, Bertone G, Bon E, Blas D, Brito R, Bulik T, Burrage C, Byrnes CT, Caprini C, Chernyakova M, Chruściel P, Colpi M, Ferrari V, Gaggero D, Gair J, García-Bellido J, Hassan SF, Heisenberg L, Hendry M, Heng IS, Herdeiro C, Hinderer T, Horesh A, Kavanagh BJ, Kocsis B, Kramer M, Le Tiec A, Mingarelli C, Nardini G, Nelemans G, Palenzuela C, Pani P, Perego A, Porter EK, Rossi EM, Schmidt P, Sesana A, Sperhake U, Stamerra A, Stein LC, Tamanini N, Tauris TM, Urena-López LA, Vincent F, Volonteri M, Wardell B, Wex N, Yagi K et al (2019) Black holes, gravitational waves and fundamental physics: a roadmap. Class Quan Grav 36(14):143001. https://doi.org/10.1088/1361-6382/ab0587

    Article  ADS  MathSciNet  Google Scholar 

  23. Bartos I, Kocsis B, Haiman Z, Márka S (2017) Rapid and Bright Stellar-mass Binary Black hole mergers in active galactic nuclei. ApJ 835(2):165. https://doi.org/10.3847/1538-4357/835/2/165

    Article  ADS  Google Scholar 

  24. Benacquista MJ, Downing JMB (2013) Relativistic binaries in globular clusters. Liv Rev Relativ 16(1):4. https://doi.org/10.12942/lrr-2013-4

    Article  ADS  MATH  Google Scholar 

  25. Binney J, Tremaine S (2008) Galactic dynamics, 2nd edn

    Google Scholar 

  26. Bouffanais Y, Mapelli M, Gerosa D, Di Carlo UN, Giacobbo N, Berti E, Baibhav V (2019) Constraining the fraction of binary black holes formed in isolation and young star clusters with gravitational-wave data. ApJ 886(1):25. https://doi.org/10.3847/1538-4357/ab4a79

    Article  ADS  Google Scholar 

  27. Bub MW, Petrovich C (2020) Compact-object Mergers in the Galactic Center: Evolution in Triaxial Clusters. ApJ 894(1):15. https://doi.org/10.3847/1538-4357/ab8461

    Article  ADS  Google Scholar 

  28. de Mink SE, Mandel I (2016) The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO. MNRAS 460(4):3545–3553. https://doi.org/10.1093/mnras/stw1219

    Article  ADS  Google Scholar 

  29. D’Orazio DJ, Samsing J (2018) Black hole mergers from globular clusters observable by LISA II. Resolved eccentric sources and the gravitational wave background. MNRAS 481(4):4775–4785. https://doi.org/10.1093/mnras/sty2568

    Article  ADS  Google Scholar 

  30. Farr WM, Stevenson S, Miller MC, Mandel I, Farr B, Vecchio A (2017) Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature 548(7667):426–429. https://doi.org/10.1038/nature23453

    Article  ADS  Google Scholar 

  31. Fishbach M, Holz DE, Farr B (2017) Are LIGO’s Black Holes made from smaller black holes? Astrophys J 840(2):L24. https://doi.org/10.3847/2041-8213/aa7045

    Article  ADS  Google Scholar 

  32. Fragione G, Banerjee S (2021) Binary black hole mergers from young massive and open clusters: comparison to GWTC-2 gravitational wave data. arXiv e-prints arXiv:2103. 10447

    Google Scholar 

  33. Fragione G, Grishin E, Leigh NWC, Perets HB, Perna R (2019) Black hole and neutron star mergers in galactic nuclei. MNRAS 488(1):47–63. https://doi.org/10.1093/mnras/stz1651

    Article  ADS  Google Scholar 

  34. Fragione G, Kocsis B (2018) Black Hole mergers from an evolving population of globular clusters. Phys Rev Lett 121(16):161103. https://doi.org/10.1103/PhysRevLett.121.161103

    Article  ADS  Google Scholar 

  35. Fragione G, Kocsis B (2019) Black hole mergers from quadruples. MNRAS 486(4):4781–4789. https://doi.org/10.1093/mnras/stz1175

    Article  ADS  Google Scholar 

  36. Fragione G, Kocsis B (2020) Effective spin distribution of black hole mergers in triples. MNRAS 493(3):3920–3931. https://doi.org/10.1093/mnras/staa443

    Article  ADS  Google Scholar 

  37. Fragione G, Leigh NWC, Perna R (2019) Black hole and neutron star mergers in galactic nuclei: the role of triples. MNRAS 488(2):2825–2835. https://doi.org/10.1093/mnras/stz1803

    Article  ADS  Google Scholar 

  38. Fragione G, Martinez MAS, Kremer K, Chatterjee S, Rodriguez CL, Ye CS, Weatherford NC, Naoz S, Rasio FA (2020) Demographics of triple systems in dense star clusters. ApJ 900(1):16. https://doi.org/10.3847/1538-4357/aba89b

    Article  ADS  Google Scholar 

  39. Fragione G, Kocsis B, Rasio FA, Silk J (2021) Repeated mergers, mass-gap black holes, and formation of intermediate-mass black holes in nuclear star clusters. arXiv e-prints arXiv:2107.04639

    Google Scholar 

  40. Fragione G, Silk J (2020) Repeated mergers and ejection of black holes within nuclear star clusters. MNRAS 498(4):4591–4604. https://doi.org/10.1093/mnras/staa2629

    Article  ADS  Google Scholar 

  41. Freitag M, Amaro-Seoane P, Kalogera V (2006) Stellar remnants in Galactic nuclei: mass segregation. ApJ 649:91–117. https://doi.org/10.1086/506193

    Article  ADS  Google Scholar 

  42. Gayathri V, Healy J, Lange J, O’Brien B, Szczepanczyk M, Bartos I, Campanelli M, Klimenko S, Lousto C, O’Shaughnessy R (2020) GW190521 as a highly eccentric black hole merger. arXiv e-prints arXiv:2009.05461

    Google Scholar 

  43. Gerosa D, Berti E (2017) Are merging black holes born from stellar collapse or previous mergers? Phys Rev D 95(12):124046. https://doi.org/10.1103/PhysRevD.95.124046

    Article  ADS  Google Scholar 

  44. Gerosa D, Berti E (2019) Escape speed of stellar clusters from multiple-generation black-hole mergers in the upper mass gap. Phys Rev D 100(4):041301. https://doi.org/10.1103/PhysRevD.100.041301

    Article  ADS  Google Scholar 

  45. Giacobbo N, Mapelli M, Spera M (2018) Merging black hole binaries: the effects of progenitor’s metallicity, mass-loss rate and Eddington factor. MNRAS 474(3):2959–2974. https://doi.org/10.1093/mnras/stx2933

    Article  ADS  Google Scholar 

  46. Gnedin OY, Ostriker JP, Tremaine S (2014) Co-evolution of Galactic nuclei and globular cluster systems. ApJ 785(1):71. https://doi.org/10.1088/0004-637X/785/1/71

    Article  ADS  Google Scholar 

  47. Gnedin OY, Zhao H, Pringle JE, Fall SM, Livio M, Meylan G (2002) The unique history of the globular cluster ω centauri. ApJ 568(1):L23–L26. https://doi.org/10.1086/340319

    Article  ADS  Google Scholar 

  48. Gondán L, Kocsis B (2019) Measurement accuracy of inspiraling eccentric neutron star and black hole binaries using gravitational waves. ApJ 871:178. https://doi.org/10.3847/1538-4357/aaf893

    Article  ADS  Google Scholar 

  49. Gondán L, Kocsis B (2020) High eccentricities and high masses characterize gravitational-wave captures in Galactic nuclei as seen by earth-based detectors. arXiv e-prints arXiv:2011.02507

    Google Scholar 

  50. Gondán L, Kocsis B, Raffai P, Frei Z (2018) Eccentric black hole gravitational-wave capture sources in Galactic nuclei: distribution of binary parameters. ApJ 860:5. https://doi.org/10.3847/1538-4357/aabfee

    Article  ADS  Google Scholar 

  51. Goodman J, Tan JC (2004) Supermassive stars in quasar disks. ApJ 608(1):108–118. https://doi.org/10.1086/386360

    Article  ADS  Google Scholar 

  52. Hailey CJ, Mori K, Bauer FE, Berkowitz ME, Hong J, Hord BJ (2018) A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy. Nature 556(7699):70–73. https://doi.org/10.1038/nature25029

    Article  ADS  Google Scholar 

  53. Haiman Z, Kocsis B, Menou K (2009) The population of viscosity- and gravitational wave-driven supermassive black hole binaries among luminous active Galactic nuclei. ApJ 700(2):1952–1969. https://doi.org/10.1088/0004-637X/700/2/1952

    Article  ADS  Google Scholar 

  54. Hamers AS, Bar-Or B, Petrovich C, Antonini F (2018) The impact of vector resonant relaxation on the evolution of binaries near a massive black hole: implications for gravitational-wave sources. ApJ 865:2. https://doi.org/10.3847/1538-4357/aadae2

    Article  ADS  Google Scholar 

  55. Hamers AS, Fragione G, Neunteufel P, Kocsis B (2021) First and second-generation black hole and neutron star mergers in 2+2 quadruples: population statistics. arXiv e-prints arXiv:2103.03782

    Google Scholar 

  56. Hamers AS, Safarzadeh M (2020) Was GW190412 Born from a Hierarchical 3 + 1 quadruple configuration? ApJ 898(2):99. https://doi.org/10.3847/1538-4357/ab9b27

    Article  ADS  Google Scholar 

  57. Hamilton C, Rafikov RR (2019) Compact Object Binary Mergers Driven By Cluster Tides: A New Channel for LIGO/Virgo Gravitational-wave Events. ApJ881(L):13. https://doi.org/10.3847/2041-8213/ab3468

  58. Hamilton C, Rafikov RR (2021) Secular dynamics of binaries in stellar clusters - III. Doubly averaged dynamics in the presence of general-relativistic precession. MNRAS 505(3):4151–4177. https://doi.org/10.1093/mnras/stab1284

    Article  ADS  Google Scholar 

  59. Heggie DC (1975) Binary evolution in stellar dynamics. MNRAS 173:729–787. https://doi.org/10.1093/mnras/173.3.729

    Article  ADS  Google Scholar 

  60. Hoang BM, Naoz S, Kocsis B, Rasio FA et al (2018) Black hole mergers in Galactic nuclei induced by the Eccentric Kozai-Lidov Effect. ApJ 856:140. https://doi.org/10.3847/1538-4357/aaafce

    Article  ADS  Google Scholar 

  61. Hut P, Bahcall JN (1983) Binary-single star scattering. I – Numerical experiments for equal masses. ApJ 268:319–341. https://doi.org/10.1086/160956

    Google Scholar 

  62. Inayoshi K, Hirai R, Kinugawa T, Hotokezaka K (2017) Formation pathway of population III coalescing binary black holes through stable mass transfer. MNRAS 468(4):5020–5032. https://doi.org/10.1093/mnras/stx757

    Article  ADS  Google Scholar 

  63. Katz B, Dong S (2012) The rate of WD-WD head-on collisions may be as high as the SNe Ia rate. arXiv e-prints arXiv:1211.4584

    Google Scholar 

  64. Keshet U, Hopman C, Alexander T (2009) Analytic study of mass segregation around a massive black hole. ApJ 698:L64–L67. https://doi.org/10.1088/0004-637X/698/1/L64

    Article  ADS  Google Scholar 

  65. Kimball C, Talbot C, Berry CPL, Carney M, Zevin M, Thrane E, Kalogera V (2020) Black hole genealogy: identifying hierarchical mergers with gravitational waves. ApJ 900(2):177. https://doi.org/10.3847/1538-4357/aba518

    Article  ADS  Google Scholar 

  66. Kimball C, Talbot C, Berry CPL, Zevin M, Thrane E, Kalogera V, Buscicchio R, Carney M, Dent T, Middleton H, Payne E, Veitch J, Williams D (2020) Evidence for hierarchical black hole mergers in the second LIGO–Virgo gravitational-wave catalog. arXiv e-prints arXiv:2011.05332

    Google Scholar 

  67. Kocsis B, Suyama T, Tanaka T, Yokoyama S (2018) Hidden universality in the merger rate distribution in the primordial black hole scenario. ApJ 854(1):41. https://doi.org/10.3847/1538-4357/aaa7f4

    Article  ADS  Google Scholar 

  68. Kocsis B, Yunes N, Loeb A (2011) Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks. Phys Rev D 84(2):024032. https://doi.org/10.1103/PhysRevD.84.024032

    Article  ADS  Google Scholar 

  69. Kremer K, Rodriguez CL, Amaro-Seoane P, Breivik K, Chatterjee S, Katz ML, Larson SL, Rasio FA, Samsing J, Ye CS, Zevin M (2019) Post-Newtonian dynamics in dense star clusters: Binary black holes in the LISA band. Phys Rev D 99(6):063003. https://doi.org/10.1103/PhysRevD.99.063003

    Article  ADS  Google Scholar 

  70. Kroupa P (2001) On the variation of the initial mass function. MNRAS 322(2):231–246. https://doi.org/10.1046/j.1365-8711.2001.04022.x

    Article  ADS  Google Scholar 

  71. Kruckow MU, Tauris TM, Langer N, Kramer M, Izzard RG (2018) Progenitors of gravitational wave mergers: binary evolution with the stellar grid-based code COMBINE. MNRAS 481(2):1908–1949. https://doi.org/10.1093/mnras/sty2190

    Article  ADS  Google Scholar 

  72. Kulkarni SR, Hut P, McMillan S (1993) Stellar black holes in globular clusters. Nature 364:421–423. https://doi.org/10.1038/364421a0

    Article  ADS  Google Scholar 

  73. Lee MH (1993) N-body evolution of dense clusters of compact stars. ApJ 418:147. https://doi.org/10.1086/173378

    Article  ADS  Google Scholar 

  74. Leigh NWC, Geller AM, McKernan B, Ford KES, Mac Low MM, Bellovary J, Haiman Z, Lyra W, Samsing J, O’Dowd M, Kocsis B, Endlich S (2018) On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening. MNRAS 474(4):5672–5683. https://doi.org/10.1093/mnras/stx3134

    Article  ADS  Google Scholar 

  75. Leigh NWC, Geller AM, Shara MM, Garland J, Clees-Baron H, Ahmed A (2017) Small-N collisional dynamics – III: the battle for the realm of not-so-small-N. MNRAS 471(2):1830–1840. https://doi.org/10.1093/mnras/stx1704

    Article  ADS  Google Scholar 

  76. Leigh NWC, Stone NC, Geller AM, Shara MM, Muddu H, Solano-Oropeza D, Thomas Y (2016) The chaotic four-body problem in Newtonian gravity- I. Identical point-particles. MNRAS 463(3):3311–3325. https://doi.org/10.1093/mnras/stw2178

    Article  ADS  Google Scholar 

  77. Lower ME, Thrane E, Lasky PD, Smith R (2018) Measuring eccentricity in binary black hole inspirals with gravitational waves. Phys Rev D 98(8):083028. https://doi.org/10.1103/PhysRevD.98.083028

    Article  ADS  Google Scholar 

  78. Luo L, Katz B, Dong S (2016) Double-averaging can fail to characterize the long-term evolution of Lidov-Kozai Cycles and derivation of an analytical correction. MNRAS 458(3):3060–3074. https://doi.org/10.1093/mnras/stw475

    Article  ADS  Google Scholar 

  79. Mandel I, de Mink SE (2016) Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. MNRAS 458(3):2634–2647. https://doi.org/10.1093/mnras/stw379

    Article  ADS  Google Scholar 

  80. Mapelli M, Dall’Amico M, Bouffanais Y, Giacobbo N, Arca Sedda M, Artale MC, Ballone A, Di Carlo UN, Iorio G, Santoliquido F, Torniamenti S (2021) Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties. arXiv e-prints arXiv:2103. 05016

    Google Scholar 

  81. Mapelli M, Giacobbo N (2018) The cosmic merger rate of neutron stars and black holes. MNRAS 479(4):4391–4398. https://doi.org/10.1093/mnras/sty1613

    Article  ADS  Google Scholar 

  82. Mapelli M, Giacobbo N, Santoliquido F, Artale MC (2019) The properties of merging black holes and neutron stars across cosmic time. MNRAS 487(1):2–13. https://doi.org/10.1093/mnras/stz1150

    Article  ADS  Google Scholar 

  83. Mapelli M, Santoliquido F, Bouffanais Y, Arca Sedda M, Giacobbo N, Artale MC, Ballone A (2020) Hierarchical mergers in young, globular and nuclear star clusters: black hole masses and merger rates. arXiv e-prints arXiv:2007.15022

    Google Scholar 

  84. Marchant P, Langer N, Podsiadlowski P, Tauris TM, Moriya TJ (2016) A new route towards merging massive black holes. A&A 588:A50. https://doi.org/10.1051/0004-6361/201628133

    Article  ADS  Google Scholar 

  85. Martinez MAS, Fragione G, Kremer K, Chatterjee S, Rodriguez CL, Samsing J, Ye CS, Weatherford NC, Zevin M, Naoz S, Rasio FA (2020) Black Hole mergers from hierarchical triples in dense star clusters. arXiv e-prints arXiv:2009.08468

    Google Scholar 

  86. McClintock JE, Narayan R, Steiner JF (2014) Black Hole spin via continuum fitting and the role of spin in powering transient jets. Space Sci Rev 183(1–4):295–322. https://doi.org/10.1007/s11214-013-0003-9

    Article  ADS  Google Scholar 

  87. McKernan B, Ford KES, Bellovary J, Leigh NWC, Haiman Z, Kocsis B, Lyra W, Mac Low MM, Metzger B, O’Dowd M, Endlich S, Rosen DJ Constraining stellar-mass Black Hole mergers in AGN disks detectable with LIGO. Astrophys J 866(1):66 (2018). https://doi.org/10.3847/1538-4357/aadae5

    Article  ADS  Google Scholar 

  88. Miller MC, Hamilton DP (2002) Four-body effects in globular cluster black hole coalescence. ApJ 576:894–898. https://doi.org/10.1086/341788

    Article  ADS  Google Scholar 

  89. Miller MC, Hamilton DP (2002) Production of intermediate-mass black holes in globular clusters. MNRAS 330:232–240. https://doi.org/10.1046/j.1365-8711.2002.05112.x

    Article  ADS  Google Scholar 

  90. Miralda-Escudé J, Gould A (2000) A cluster of black holes at the galactic center. ApJ 545:847–853. https://doi.org/10.1086/317837

    Article  ADS  Google Scholar 

  91. Naoz S (2016) The Eccentric Kozai-Lidov Effect and its applications. ARA&A 54:441–489. https://doi.org/10.1146/annurev-astro-081915-023315

    Article  ADS  Google Scholar 

  92. Neijssel CJ, Vigna-Gómez A, Stevenson S, Barrett JW, Gaebel SM, Broekgaarden FS, de Mink SE, Szécsi D, Vinciguerra S, Mandel I (2019) The effect of the metallicity-specific star formation history on double compact object mergers. MNRAS 490(3):3740–3759. https://doi.org/10.1093/mnras/stz2840

    Article  ADS  Google Scholar 

  93. Neijssel CJ, Vigna-Gómez A, Stevenson S, Barrett JW, Gaebel SM, Broekgaarden FS, de Mink SE, Szécsi D, Vinciguerra S, Mandel I (2019) The effect of the metallicity-specific star formation history on double compact object mergers. MNRAS 490(3):3740–3759. https://doi.org/10.1093/mnras/stz2840

    Article  ADS  Google Scholar 

  94. Neumayer N, Walcher CJ (2012) Are nuclear star clusters the precursors of massive black holes? Adv Astron 2012:709038. https://doi.org/10.1155/2012/709038

    ADS  Google Scholar 

  95. O’Leary RM, Kocsis B, Loeb A (2009) Gravitational waves from scattering of stellar-mass black holes in galactic nuclei. MNRAS 395:2127–2146. https://doi.org/10.1111/j.1365-2966.2009.14653.x

    Article  ADS  Google Scholar 

  96. O’Leary RM, Kocsis B, Loeb A (2009) Gravitational waves from scattering of stellar-mass black holes in galactic nuclei. MNRAS 395:2127–2146. https://doi.org/10.1111/j.1365-2966.2009.14653.x

    Article  ADS  Google Scholar 

  97. O’Leary RM, Meiron Y, Kocsis B (2016) Dynamical formation signatures of black hole binaries in the first detected mergers by LIGO. ApJ 824:L12. https://doi.org/10.3847/2041-8205/824/1/L12

    Article  ADS  Google Scholar 

  98. O’Leary RM, Rasio FA, Fregeau JM, Ivanova N, O’Shaughnessy R (2006) Binary mergers and growth of black holes in dense star clusters. ApJ 637:937–951. https://doi.org/10.1086/498446

    Article  ADS  Google Scholar 

  99. Pan Z, Yang H: Formation rate of extreme mass ratio inspirals in active galactic nuclei. PRD 103(10):103018. https://doi.org/10.1103/PhysRevD.103.103018

  100. Pavlík V, Vesperini E (2021) New insights into star cluster evolution towards energy equipartition. arXiv e-prints arXiv:2103.06272

    Google Scholar 

  101. Pechetti R, Seth A, Neumayer N, Georgiev I, Kacharov N, den Brok M (2020) Luminosity models and density profiles for nuclear star clusters for a nearby volume-limited sample of 29 galaxies. ApJ 900(1):32. https://doi.org/10.3847/1538-4357/abaaa7

    Article  ADS  Google Scholar 

  102. Peng P, Chen X (2021) The last migration trap of compact objects in AGN accretion disc. MNRAS 505(1):1324–1333. https://doi.org/10.1093/mnras/stab1419

    Article  ADS  MathSciNet  Google Scholar 

  103. Peters PC (1964) Gravitational radiation and the motion of two point masses. Phys Rev 136:1224–1232. https://doi.org/10.1103/PhysRev.136.B1224

    Article  ADS  Google Scholar 

  104. Petrovich C, Antonini F (2017) Greatly enhanced merger rates of compact-object binaries in non-spherical nuclear star clusters. ApJ 846:146. https://doi.org/10.3847/1538-4357/aa8628

    Article  ADS  Google Scholar 

  105. Pfuhl O, Alexander T, Gillessen S, Martins F, Genzel R, Eisenhauer F, Fritz TK, Ott T (2014) Massive binaries in the vicinity of Sgr A*. ApJ 782(2):101. https://doi.org/10.1088/0004-637X/782/2/101

    Article  ADS  Google Scholar 

  106. Portegies Zwart SF, McMillan SLW (2000) Black Hole mergers in the universe. ApJ 528:L17–L20. https://doi.org/10.1086/312422

    Article  ADS  Google Scholar 

  107. Quinlan GD (1996) The dynamical evolution of massive black hole binaries I. Hardening in a fixed stellar background. New A 1(1):35–56. https://doi.org/10.1016/S1384-1076(96) 00003-6

  108. Quinlan GD, Shapiro SL (1989) Dynamical evolution of dense clusters of compact stars. ApJ 343:725–749. https://doi.org/10.1086/167745

    Article  ADS  Google Scholar 

  109. Randall L, Xianyu ZZ (2018) An Analytical Portrait of Binary Mergers in Hierarchical Triple Systems. ApJ 864(2):134. https://doi.org/10.3847/1538-4357/aad7fe

    Article  ADS  Google Scholar 

  110. Randall L, Xianyu ZZ (2018) Induced Ellipticity for Inspiraling Binary Systems. ApJ 853(1):93. https://doi.org/10.3847/1538-4357/aaa1a2

    Article  ADS  Google Scholar 

  111. Rasskazov A, Kocsis B (2019) The rate of stellar mass black hole scattering in Galactic nuclei. ApJ 881(1):20. https://doi.org/10.3847/1538-4357/ab2c74

    Article  ADS  Google Scholar 

  112. Rodriguez CL, Amaro-Seoane P, Chatterjee S, Kremer K, Rasio FA, Samsing J, Ye CS, Zevin M (2018) Post-Newtonian dynamics in dense star clusters: formation, masses, and merger rates of highly-eccentric black hole binaries. Phys Rev D 98(12):123005. https://doi.org/10.1103/PhysRevD.98.123005

    Article  ADS  Google Scholar 

  113. Rodriguez CL, Loeb A (2018) Redshift evolution of the black hole merger rate from globular clusters. ApJ 866(1):L5. https://doi.org/10.3847/2041-8213/aae377

    Article  ADS  Google Scholar 

  114. Rodriguez CL, Morscher M, Pattabiraman B, Chatterjee S, Haster CJ, Rasio FA (2015) Binary black hole mergers from globular clusters: implications for advanced LIGO. Phys Rev Lett 115(5):051101. https://doi.org/10.1103/PhysRevLett.115.051101

    Article  ADS  Google Scholar 

  115. Rodriguez CL, Zevin M, Pankow C, Kalogera V, Rasio FA (2016) Illuminating black hole binary formation channels with spins in advanced LIGO. ApJ 832:L2. https://doi.org/10.3847/2041-8205/832/1/L2

    Article  ADS  Google Scholar 

  116. Romero-Shaw IM, Kremer K, Lasky PD, Thrane E, Samsing J (2020) Gravitational waves as a probe of globular cluster formation and evolution. arXiv e-prints arXiv:2011.14541

    Google Scholar 

  117. Romero-Shaw IM, Lasky PD, Thrane E, Calderon Bustillo J (2020) GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal. arXiv e-prints arXiv:2009.04771

    Google Scholar 

  118. Safarzadeh M (2020) The branching ratio of LIGO binary black holes. ApJ 892(1):L8. https://doi.org/10.3847/2041-8213/ab7cdc

    Article  ADS  Google Scholar 

  119. Safarzadeh M, Hamers AS, Loeb A, Berger E (2020) Formation and merging of mass gap black holes in gravitational-wave merger events from wide hierarchical quadruple systems. ApJ 888(1):L3. https://doi.org/10.3847/2041-8213/ab5dc8

    Article  ADS  Google Scholar 

  120. Samsing J (2018) Eccentric black hole mergers forming in globular clusters. Phys Rev D 97(10):103014. https://doi.org/10.1103/PhysRevD.97.103014

    Article  ADS  Google Scholar 

  121. Samsing J, Askar A, Giersz M (2018) MOCCA-SURVEY Database. I. Eccentric black hole mergers during binary-single interactions in globular clusters. ApJ 855(2):124. https://doi.org/10.3847/1538-4357/aaab52

  122. Samsing J, Bartos I, D’Orazio DJ, Haiman Z, Kocsis B, Leigh NWC, Liu B, Pessah ME, Tagawa H (2020) Active galactic nuclei as factories for eccentric black hole mergers. arXiv e-prints arXiv:2010.09765

    Google Scholar 

  123. Samsing J, D’Orazio DJ (2018) Black hole mergers from globular clusters observable by LISA I: eccentric sources originating from relativistic N-body dynamics. MNRAS 481:5445–5450. https://doi.org/10.1093/mnras/sty2334

    Article  ADS  Google Scholar 

  124. Samsing J, D’Orazio DJ (2019) How post-Newtonian dynamics shape the distribution of stationary binary black hole LISA sources in nearby globular clusters. Phys Rev D 99(6):063006. https://doi.org/10.1103/PhysRevD.99.063006

    Article  ADS  MathSciNet  Google Scholar 

  125. Samsing J, D’Orazio DJ, Kremer K, Rodriguez CL, Askar A (2020) Single-single gravitational-wave captures in globular clusters: Eccentric deci-Hertz sources observable by DECIGO and Tian-Qin. PRD 101(12):123010. https://doi.org/10.1103/PhysRevD.101.123010

    Article  ADS  Google Scholar 

  126. Secunda A, Bellovary J, Mac Low MM, Ford KES, McKernan B, Leigh NWC, Lyra W, Sándor Z (2019) Orbital Migration of Interacting Stellar Mass Black Holes in Disks around Supermassive Black Holes. ApJ 878(2):85. https://doi.org/10.3847/1538-4357/ab20ca

    Article  ADS  Google Scholar 

  127. Sigurdsson S, Hernquist L (1993) Primordial black holes in globular clusters. Nature 364:423–425. https://doi.org/10.1038/364423a0

    Article  ADS  Google Scholar 

  128. Silsbee K, Tremaine S (2017) Lidov-Kozai cycles with gravitational radiation: merging black holes in isolated triple systems. ApJ 836:39. https://doi.org/10.3847/1538-4357/aa5729

    Article  ADS  Google Scholar 

  129. Spera M, Mapelli M, Giacobbo N, Trani AA, Bressan A, Costa G (2019) Merging black hole binaries with the SEVN code. MNRAS 485(1):889–907. https://doi.org/10.1093/mnras/stz359

    Article  ADS  Google Scholar 

  130. Stephan AP, Naoz S, Ghez AM, Witzel G, Sitarski BN, Do T, Kocsis B (2016) Merging binaries in the Galactic Center: the eccentric Kozai-Lidov mechanism with stellar evolution. MNRAS 460(4):3494–3504. https://doi.org/10.1093/mnras/stw1220

    Article  ADS  Google Scholar 

  131. Stone NC, Metzger BD, Haiman Z (2017) Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. MNRAS 464(1):946–954. https://doi.org/10.1093/mnras/stw2260

    Article  ADS  Google Scholar 

  132. Stone NC, Ostriker JP (2015) A Dynamical Potential-Density Pair for Star Clusters with Nearly Isothermal Interiors. ApJ 806(L):28. https://doi.org/10.1088/2041-8205/806/2/L28

    Article  ADS  Google Scholar 

  133. Szölgyén Á, Máthé G, Kocsis B (2021) Resonant dynamical friction in nuclear star clusters: rapid alignment of an intermediate mass black hole with a stellar disk. arXiv e-prints arXiv:2103.14042

    Google Scholar 

  134. Tagawa H, Haiman Z, Bartos I, Kocsis B (2020) Spin evolution of stellar-mass black hole binaries in active galactic nuclei. ApJ 899(1):26. https://doi.org/10.3847/1538-4357/aba2cc

    Article  ADS  Google Scholar 

  135. Tagawa H, Haiman Z, Bartos I, Kocsis B, Omukai K (2021) Signatures of hierarchical mergers in black hole spin and mass distribution. MNRAS 507(3):3362–3380. https://doi.org/10.1093/mnras/stab2315

    Article  ADS  Google Scholar 

  136. Tagawa H, Haiman Z, Kocsis B (2020) Formation and evolution of compact-object binaries in AGN disks. ApJ 898(1):25. https://doi.org/10.3847/1538-4357/ab9b8c

    Article  ADS  Google Scholar 

  137. Tagawa H, Kocsis B, Haiman Z, Bartos I, Omukai K, Samsing J (2020) Eccentric black hole mergers in active galactic nuclei. arXiv e-prints arXiv:2010.10526

    Google Scholar 

  138. Tagawa H, Kocsis B, Haiman Z, Bartos I, Omukai K, Samsing J (2021) Mass-gap mergers in active galactic nuclei. ApJ 908(2):194. https://doi.org/10.3847/1538-4357/abd555

    Article  ADS  Google Scholar 

  139. Trenti M, van der Marel R (2013) No energy equipartition in globular clusters. MNRAS 435(4):3272–3282. https://doi.org/10.1093/mnras/stt1521

    Article  ADS  Google Scholar 

  140. Turner M (1977) Gravitational radiation from point-masses in unbound orbits - Newtonian results. ApJ 216:610–619. https://doi.org/10.1086/155501

    Article  ADS  Google Scholar 

  141. van den Heuvel EPJ, Portegies Zwart SF, de Mink SE (2017) Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer. MNRAS 471(4):4256–4264. https://doi.org/10.1093/mnras/stx1430

    Article  ADS  Google Scholar 

  142. Wen L (2003) On the eccentricity distribution of coalescing black hole binaries driven by the Kozai Mechanism in globular clusters. ApJ 598:419–430. https://doi.org/10.1086/378794

    Article  ADS  Google Scholar 

  143. Wong KWK, Breivik K, Kremer K, Callister T (2020) Joint constraints on the field-cluster mixing fraction, common envelope efficiency, and globular cluster radii from a population of binary hole mergers via deep learning. arXiv e-prints arXiv:2011.03564

    Google Scholar 

  144. Yang Y, Bartos I, Gayathri V, Ford KES, Haiman Z, Klimenko S, Kocsis B, Márka S, Márka Z, McKernan B, O’Shaughnessy R (2019) Hierarchical black hole mergers in active galactic nuclei. Phys Rev Lett 123(18):181101. https://doi.org/10.1103/PhysRevLett.123.181101

    Article  ADS  Google Scholar 

  145. Zaldarriaga M, Kushnir D, Kollmeier JA (2018) The expected spins of gravitational wave sources with isolated field binary progenitors. MNRAS 473:4174–4178. https://doi.org/10.1093/mnras/stx2577

    Article  ADS  Google Scholar 

  146. Zevin M, Bavera SS, Berry CPL, Kalogera V, Fragos T, Marchant P, Rodriguez CL, Antonini F, Holz DE, Pankow C (2020) One channel to rule them all? Constraining the origins of binary black holes using multiple formation pathways. arXiv e-prints arXiv:2011.10057

    Google Scholar 

  147. Zevin M, Samsing J, Rodriguez C, Haster CJ, Ramirez-Ruiz E (2019) Eccentric black hole mergers in dense star clusters: the role of binary-binary encounters. ApJ 871(1):91. https://doi.org/10.3847/1538-4357/aaf6ec

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Program for Research and Innovation ERC-2014-STG under grant agreement no. 638435 (GalNUC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bence Kocsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kocsis, B. (2022). Dynamical Formation of MergingStellar-Mass Binary Black Holes. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_15

Download citation

Publish with us

Policies and ethics