Skip to main content
Log in

Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole’s accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a of the black hole (|a |<1). The ten spins that have so far been measured by this continuum-fitting method range widely from a ≈0 to a >0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Spin is commonly expressed in terms of the dimensionless parameter a ≡cJ/GM2, where J and M are respectively the angular momentum and mass of the black hole.

  2. Apart from H1743–322, our selection is based on firm dynamical evidence, and we therefore exclude some important systems for which there is significant evidence that the primary is a black hole, e.g., Cyg X-3 (Zdziarski et al. 2013), or a strong presumption that it is, e.g., SS433 (Begelman et al. 2006) and 4U 1957+11 (Nowak et al. 2012).

  3. For alternatives, see Gierliński et al. (2001), Kolehmainen and Done (2010), and Straub et al. (2011).

  4. In contrast, Noble et al. (2010) find that the stress profile is almost completely independent of disk thickness.

  5. While thin disks are subject to warping, thick disks are not (Dexter and Fragile 2011).

  6. Unfortunately the continuum-fitting method cannot fit for the inclination of the inner disk because there is a degeneracy between the inclination and spin parameter (Li et al. 2009).

  7. In the case of a fifth transient, 4U1543–47, radio observations did not include the peak of the light curve, so one could only deduce a lower limit to the jet power. Note that the radio peak can be very narrow in time, e.g., ≈1-day in the case of XTE J1859+226 (Fig. 2), so one requires dense radio monitoring to catch the peak.

  8. The scaling by mass is sensible because the sources are near the Eddington luminosity limit, which is proportional to mass. However, since the masses of the black holes differ little (Table 1), the results would be virtually identical if the mass scaling were eliminated.

  9. None of the results change if one chooses a different reference frequency, e.g., 1.4 GHz or 15 GHz.

  10. The two scalings agree for small values of a , but differ as a →1.

  11. The lower level of confidence reported by Russell et al. (2013) is largely attributable to their use of radio data for a flare of H1743–322 that is unrelated to the ballistic jet, namely a flare event that occurred 28 days before the X-ray flux peaked (McClintock et al. 2009). We focus solely on post-Eddington radio flares. The relevant radio flare event, which we consider, occurred 2.6 days after X-ray maximum (Steiner et al. 2013).

  12. The ejection apparently shuts off, coincidentally, as the jet becomes optically thin.

  13. Using somewhat different assumptions, (Willott et al. 1999) estimated that kinetic jet kinetic luminosities of radio galaxies should vary as (νL ν )6/7, i.e., a slope again close to but less than unity.

References

  • Y. Abe, Y. Fukazawa, A. Kubota, D. Kasama, K. Makishima, Publ. Astron. Soc. Jpn. 57, 629 (2005)

    ADS  Google Scholar 

  • M.A. Abramowicz, P.C. Fragile, Living Rev. Relativ. 16, 1 (2013)

    ADS  Google Scholar 

  • N. Afshordi, B. Paczyński, Astrophys. J. 592, 354 (2003)

    ADS  Google Scholar 

  • K.A. Arnaud, in Astronomical Society of the Pacific Conference Series, ed. by G.H. Jacoby, J. Barnes. Astronomical Data Analysis Software and Systems V, vol. 101 (1996), p. 17

    Google Scholar 

  • S.A. Balbus, J.F. Hawley, Rev. Mod. Phys. 70, 1 (1998)

    ADS  Google Scholar 

  • C. Bambi, Astron. Rev. 8, 010000 (2013)

    ADS  Google Scholar 

  • J.M. Bardeen, Nature 226, 64 (1970)

    ADS  Google Scholar 

  • J.M. Bardeen, J.A. Petterson, Astrophys. J. 195, L65 (1975)

    ADS  Google Scholar 

  • J.M. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347 (1972)

    ADS  Google Scholar 

  • K. Beckwith, J.F. Hawley, J.H. Krolik, Astrophys. J. 678, 1180 (2008)

    ADS  Google Scholar 

  • M.C. Begelman, A.R. King, J.E. Pringle, Mon. Not. R. Astron. Soc. 370, 399 (2006)

    ADS  Google Scholar 

  • T.M. Belloni, A. Sanna, M. Méndez, Mon. Not. R. Astron. Soc. 426, 1701 (2012)

    ADS  Google Scholar 

  • R.D. Blandford, R.L. Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977)

    ADS  Google Scholar 

  • C.T. Bolton, Nature 235, 271 (1972)

    ADS  Google Scholar 

  • H.V.D. Bradt, J.E. McClintock, Annu. Rev. Astron. Astrophys. 21, 13 (1983)

    ADS  Google Scholar 

  • C. Brocksopp et al., Mon. Not. R. Astron. Soc. 331, 765 (2002)

    ADS  Google Scholar 

  • C. Brocksopp et al., Mon. Not. R. Astron. Soc. 365, 1203 (2006)

    ADS  Google Scholar 

  • M. Campanelli, C.O. Lousto, Y. Zlochower, Phys. Rev. D 74, 041501 (2006)

    ADS  MathSciNet  Google Scholar 

  • A.G. Cantrell et al., Astrophys. J. 710, 1127 (2010)

    ADS  Google Scholar 

  • S. Chandrasekhar, Shakespeare, Newton and Beethoven: or Patterns of Creativity (University of Chicago Press, Chicago, 1975)

    Google Scholar 

  • P.A. Charles, M.J. Coe, in Optical, ultraviolet and infrared observations of X-ray binaries, ed. by W.H.G. Lewin, M. van der Klis (2006), pp. 215–265

    Google Scholar 

  • R. Cooke, J. Bland-Hawthorn, R. Sharp, Z. Kuncic, Astrophys. J. 687, L29 (2008)

    ADS  Google Scholar 

  • A.P. Cowley, D. Crampton, J.B. Hutchings, R. Remillard, J.E. Penfold, Astrophys. J. 272, 118 (1983)

    ADS  Google Scholar 

  • B. Czerny, K. Hryniewicz, M. Nikołajuk, A. Sądowski, Mon. Not. R. Astron. Soc. 415, 2942 (2011)

    ADS  Google Scholar 

  • T. Damour, R. Ruffini, R.S. Hanni, J.R. Wilson, Phys. Rev. D 17, 1518 (1978)

    ADS  Google Scholar 

  • S.W. Davis, I. Hubeny, Astrophys. J. Suppl. Ser. 164, 530 (2006)

    ADS  Google Scholar 

  • S.W. Davis, O.M. Blaes, I. Hubeny, N.J. Turner, Astrophys. J. 621, 372 (2005)

    ADS  Google Scholar 

  • S.W. Davis, C. Done, O.M. Blaes, Astrophys. J. 647, 525 (2006)

    ADS  Google Scholar 

  • S.W. Davis, O.M. Blaes, S. Hirose, J.H. Krolik, Astrophys. J. 703, 569 (2009)

    ADS  Google Scholar 

  • J. Dexter, P.C. Fragile, Astrophys. J. 730, 36 (2011)

    ADS  Google Scholar 

  • C. Done, S.W. Davis, Astrophys. J. 683, 389 (2008)

    ADS  Google Scholar 

  • M. Dovčiak, F. Muleri, R.W. Goosmann, V. Karas, G. Matt, Mon. Not. R. Astron. Soc. 391, 32 (2008)

    ADS  Google Scholar 

  • A.C. Fabian, M.J. Rees, L. Stella, N.E. White, Mon. Not. R. Astron. Soc. 238, 729 (1989)

    ADS  Google Scholar 

  • A.C. Fabian et al., Mon. Not. R. Astron. Soc. 424, 217 (2012)

    ADS  Google Scholar 

  • H. Falcke, E. Körding, S. Markoff, Astron. Astrophys. 414, 895 (2004)

    ADS  Google Scholar 

  • W.M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C.D. Bailyn, I. Mandel, V. Kalogera, Astrophys. J. 741, 103 (2011)

    ADS  Google Scholar 

  • R. Fender, in Jets from X-Ray Binaries, ed. by W.H.G. Lewin, M. van der Klis (2006), pp. 381–419

    Google Scholar 

  • R. Fender, T. Belloni, Annu. Rev. Astron. Astrophys. 42, 317 (2004)

    ADS  Google Scholar 

  • R.P. Fender, S.T. Garrington, D.J. McKay, T.W.B. Muxlow, G.G. Pooley, R.E. Spencer, A.M. Stirling, E.B. Waltman, Mon. Not. R. Astron. Soc. 304, 865 (1999)

    ADS  Google Scholar 

  • R.P. Fender, T.M. Belloni, E. Gallo, Mon. Not. R. Astron. Soc. 355, 1105 (2004)

    ADS  Google Scholar 

  • R.P. Fender, A.M. Stirling, R.E. Spencer, I. Brown, G.G. Pooley, T.W.B. Muxlow, J.C.A. Miller-Jones, Mon. Not. R. Astron. Soc. 369, 603 (2006)

    ADS  Google Scholar 

  • R.P. Fender, E. Gallo, D. Russell, Mon. Not. R. Astron. Soc. 406, 1425 (2010)

    ADS  Google Scholar 

  • T. Fragos, M. Tremmel, E. Rantsiou, K. Belczynski, Astrophys. J. 719, L79 (2010)

    ADS  Google Scholar 

  • T. Fragos et al., Astrophys. J. 764, 41 (2013)

    ADS  Google Scholar 

  • J. Frank, A. King, D.J. Raine, Accretion Power in Astrophysics: Third Edition (2002)

  • E. Gallo, R.P. Fender, G.G. Pooley, Mon. Not. R. Astron. Soc. 344, 60 (2003)

    ADS  Google Scholar 

  • C.F. Gammie, Astrophys. J. 522, L57 (1999)

    ADS  Google Scholar 

  • A.M. Ghez et al., Astrophys. J. 689, 1044 (2008)

    ADS  Google Scholar 

  • M. Gierliński, C. Done, Mon. Not. R. Astron. Soc. 347, 885 (2004)

    ADS  Google Scholar 

  • M. Gierliński, A. Maciołek-Niedźwiecki, K. Ebisawa, Mon. Not. R. Astron. Soc. 325, 1253 (2001)

    ADS  Google Scholar 

  • S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, T. Ott, Astrophys. J. 692, 1075 (2009)

    ADS  Google Scholar 

  • L. Gou et al., Astrophys. J. 701, 1076 (2009)

    ADS  Google Scholar 

  • L. Gou, J.E. McClintock, J.F. Steiner, R. Narayan, A.G. Cantrell, C.D. Bailyn, J.A. Orosz, Astrophys. J. 718, L122 (2010)

    ADS  Google Scholar 

  • L. Gou et al., Astrophys. J. 742, 85 (2011)

    ADS  Google Scholar 

  • J. Greene, C.D. Bailyn, J.A. Orosz, Astrophys. J. 554, 1290 (2001)

    ADS  Google Scholar 

  • K. Gültekin et al., Astrophys. J. 695, 1577 (2009)

    ADS  Google Scholar 

  • S. Heinz, R.A. Sunyaev, Mon. Not. R. Astron. Soc. 343, L59 (2003)

    ADS  Google Scholar 

  • J.R. Herrnstein, J.M. Moran, L.J. Greenhill, A.S. Trotter, Astrophys. J. 629, 719 (2005)

    ADS  Google Scholar 

  • S. Hirose, J.H. Krolik, O. Blaes, Astrophys. J. 691, 16 (2009)

    ADS  Google Scholar 

  • R.M. Hjellming, K.J. Johnston, Astrophys. J. 328, 600 (1988)

    ADS  Google Scholar 

  • I. Hubeny, T. Lanz, Astrophys. J. 439, 875 (1995)

    ADS  Google Scholar 

  • T. Johannsen, D. Psaltis, Astrophys. J. 716, 187 (2010)

    ADS  Google Scholar 

  • T. Johannsen, D. Psaltis, Phys. Rev. D 83, 124015 (2011)

    ADS  Google Scholar 

  • E.J.D. Jolley, Z. Kuncic, G.V. Bicknell, S. Wagner, Mon. Not. R. Astron. Soc. 400, 1521 (2009)

    ADS  Google Scholar 

  • S. Kato, J. Fukue, S. Mineshige, Black-Hole Accretion Disks. Towards a New Paradigm (2008)

  • B.C. Kelly, Astrophys. J. 665, 1489 (2007)

    ADS  Google Scholar 

  • A.R. King, U. Kolb, Mon. Not. R. Astron. Soc. 305, 654 (1999)

    ADS  Google Scholar 

  • S. Koide, K. Shibata, T. Kudoh, D.L. Meier, Science 295, 1688 (2002)

    ADS  Google Scholar 

  • M. Kolehmainen, C. Done, Mon. Not. R. Astron. Soc. 406, 2206 (2010)

    ADS  Google Scholar 

  • J.H. Krolik, Astrophys. J. 515, L73 (1999)

    ADS  Google Scholar 

  • A. Kubota, K. Makishima, Astrophys. J. 601, 428 (2004)

    ADS  Google Scholar 

  • A. Kubota, K. Makishima, K. Ebisawa, Astrophys. J. 560, L147 (2001)

    ADS  Google Scholar 

  • A.K. Kulkarni et al., Mon. Not. R. Astron. Soc. 414, 1183 (2011)

    ADS  Google Scholar 

  • C.-H. Lee, G.E. Brown, R.A.M.J. Wijers, Astrophys. J. 575, 996 (2002)

    ADS  Google Scholar 

  • L. Li, E.R. Zimmerman, R. Narayan, J.E. McClintock, Astrophys. J. Suppl. Ser. 157, 335 (2005)

    ADS  Google Scholar 

  • L. Li, R. Narayan, J.E. McClintock, Astrophys. J. 691, 847 (2009)

    ADS  Google Scholar 

  • J. Liu, J.E. McClintock, R. Narayan, S.W. Davis, J.A. Orosz, Astrophys. J. 679, L37 (2008)

    ADS  Google Scholar 

  • D. Lynden-Bell, Nature 223, 690 (1969)

    ADS  Google Scholar 

  • A.I. MacFadyen, S.E. Woosley, Astrophys. J. 524, 262 (1999)

    ADS  Google Scholar 

  • K. Makishima, Y. Maejima, K. Mitsuda, H.V. Bradt, R.A. Remillard, I.R. Tuohy, R. Hoshi, M. Nakagawa, Astrophys. J. 308, 635 (1986)

    ADS  Google Scholar 

  • S. Markoff, M.A. Nowak, J. Wilms, Astrophys. J. 635, 1203 (2005)

    ADS  Google Scholar 

  • J.E. McClintock, R.A. Remillard, Astrophys. J. 308, 110 (1986)

    ADS  Google Scholar 

  • J.E. McClintock, R.A. Remillard, in Black Hole Binaries, ed. by W.H.G. Lewin, M. van der Klis (2006) pp. 157–213

    Google Scholar 

  • J.E. McClintock, R. Shafee, R. Narayan, R.A. Remillard, S.W. Davis, L. Li, Astrophys. J. 652, 518 (2006)

    ADS  Google Scholar 

  • J.E. McClintock, R.A. Remillard, M.P. Rupen, M.A.P. Torres, D. Steeghs, A.M. Levine, J.A. Orosz, Astrophys. J. 698, 1398 (2009)

    ADS  Google Scholar 

  • J.C. McKinney, Astrophys. J. 630, L5 (2005)

    ADS  Google Scholar 

  • J.C. McKinney, R.D. Blandford, Mon. Not. R. Astron. Soc. 394, L126 (2009)

    ADS  Google Scholar 

  • J.C. McKinney, C.F. Gammie, Astrophys. J. 611, 977 (2004)

    ADS  Google Scholar 

  • A. Merloni, S. Heinz, T. di Matteo, Mon. Not. R. Astron. Soc. 345, 1057 (2003)

    ADS  Google Scholar 

  • M. Middleton, C. Done, M. Gierliński, S.W. Davis, Mon. Not. R. Astron. Soc. 373, 1004 (2006)

    ADS  Google Scholar 

  • I.F. Mirabel, I. Rodrigues, Science 300, 1119 (2003)

    ADS  Google Scholar 

  • I.F. Mirabel, L.F. Rodríguez, Nature 371, 46 (1994)

    ADS  Google Scholar 

  • I.F. Mirabel, L.F. Rodríguez, Annu. Rev. Astron. Astrophys. 37, 409 (1999)

    ADS  Google Scholar 

  • K. Mitsuda et al., Publ. Astron. Soc. Jpn. 36, 741 (1984)

    ADS  Google Scholar 

  • E. Moreno Méndez, G.E. Brown, C. Lee, I.H. Park, Astrophys. J. 689, L9 (2008)

    ADS  Google Scholar 

  • R. Narayan, J.E. McClintock, Astrophys. J. 623, 1017 (2005)

    ADS  Google Scholar 

  • R. Narayan, J.E. McClintock, New Astron. Rev. 51, 733 (2008)

    ADS  Google Scholar 

  • R. Narayan, J.E. McClintock, Mon. Not. R. Astron. Soc. 419, L69 (2012)

    ADS  Google Scholar 

  • R. Narayan, J.E. McClintock, A. Tchekhovskoy, in Relativity and Gravitation: 100 Years After Einstein in Prague, ed. by J. Bicak, T. Ledvinka (2013, to appear)

    Google Scholar 

  • S.C. Noble, J.H. Krolik, Astrophys. J. 703, 964 (2009)

    ADS  Google Scholar 

  • S.C. Noble, J.H. Krolik, J.F. Hawley, Astrophys. J. 711, 959 (2010)

    ADS  Google Scholar 

  • S.C. Noble, J.H. Krolik, J.D. Schnittman, J.F. Hawley, Astrophys. J. 743, 115 (2011)

    ADS  Google Scholar 

  • I.D. Novikov, K.S. Thorne, in Black Holes (Les Astres Occlus), ed. by A. Giannaras (1973), pp. 343–450

    Google Scholar 

  • M.A. Nowak, J. Wilms, K. Pottschmidt, N. Schulz, D. Maitra, J. Miller, Astrophys. J. 744, 107 (2012)

    ADS  Google Scholar 

  • J.A. Orosz, in IAU Symposium, ed. by K. van der Hucht, A. Herrero, C. Esteban. A Massive Star Odyssey: from Main Sequence to Supernova, vol. 212, (2003), p. 365

    Google Scholar 

  • J.A. Orosz et al., Nature 449, 872 (2007)

    ADS  Google Scholar 

  • J.A. Orosz et al., Astrophys. J. 697, 573 (2009)

    ADS  Google Scholar 

  • J.A. Orosz, J.E. McClintock, J.P. Aufdenberg, R.A. Remillard, M.J. Reid, R. Narayan, L. Gou, Astrophys. J. 742, 84 (2011a)

    ADS  Google Scholar 

  • J.A. Orosz, J.F. Steiner, J.E. McClintock, M.A.P. Torres, R.A. Remillard, C.D. Bailyn, J.M. Miller, Astrophys. J. 730, 75 (2011b)

    ADS  Google Scholar 

  • F. Özel, D. Psaltis, R. Narayan, J.E. McClintock, Astrophys. J. 725, 1918 (2010)

    ADS  Google Scholar 

  • B. Paczyński (2000). arXiv:astro-ph/0004129v1

  • D.N. Page, K.S. Thorne, Astrophys. J. 191, 499 (1974)

    ADS  Google Scholar 

  • R.F. Penna, J.C. McKinney, R. Narayan, A. Tchekhovskoy, R. Shafee, J.E. McClintock, Mon. Not. R. Astron. Soc. 408, 752 (2010)

    ADS  Google Scholar 

  • R.F. Penna, A. Sąowski, J.C. McKinney, Mon. Not. R. Astron. Soc. 420, 684 (2012)

    ADS  Google Scholar 

  • R. Penrose, in Nuovo Cimento Rivista Serie vol. 1 (1969), p. 252

    Google Scholar 

  • M.J. Reid, J.E. McClintock, R. Narayan, L. Gou, R.A. Remillard, J.A. Orosz, Astrophys. J. 742, 83 (2011)

    ADS  Google Scholar 

  • R.A. Remillard, J.E. McClintock, Annu. Rev. Astron. Astrophys. 44, 49 (2006)

    ADS  Google Scholar 

  • R.A. Remillard, J.E. McClintock, C.D. Bailyn, Astrophys. J. 399, L145 (1992)

    ADS  Google Scholar 

  • C.S. Reynolds (2013). arXiv:1302.3260 [astro-ph.HE]

  • H. Riffert, H. Herold, Astrophys. J. 450, 508 (1995)

    ADS  Google Scholar 

  • R.R. Ross, A.C. Fabian, Mon. Not. R. Astron. Soc. 381, 1697 (2007)

    ADS  Google Scholar 

  • R. Ruffini, J.R. Wilson, Phys. Rev. D 12, 2959 (1975)

    ADS  Google Scholar 

  • M.P. Rupen, A.J. Mioduszewski, V. Dhawan ATel #434 (2005)

  • D.M. Russell, E. Gallo, R.P. Fender, Mon. Not. R. Astron. Soc. 431, 405 (2013)

    ADS  Google Scholar 

  • C. Sánchez-Fernández, A.J. Castro-Tirado, A. Giménez, C. Zurita, J. Casares, N. Lund, Astrophys. Space Sci. Suppl. 276, 51 (2001)

    ADS  Google Scholar 

  • J.D. Schnittman, J.H. Krolik, Astrophys. J. 701, 1175 (2009)

    ADS  Google Scholar 

  • R. Shafee, J.E. McClintock, R. Narayan, S.W. Davis, L. Li, R.A. Remillard, Astrophys. J. 636, L113 (2006)

    ADS  Google Scholar 

  • R. Shafee, J.C. McKinney, R. Narayan, A. Tchekhovskoy, C.F. Gammie, J.E. McClintock, Astrophys. J. 687, L25 (2008a)

    ADS  Google Scholar 

  • R. Shafee, R. Narayan, J.E. McClintock, Astrophys. J. 676, 549 (2008b)

    ADS  Google Scholar 

  • T. Shahbaz, F.A. Ringwald, J.C. Bunn, T. Naylor, P.A. Charles, J. Casares, Mon. Not. R. Astron. Soc. 271, L10 (1994)

    ADS  Google Scholar 

  • N.I. Shakura, R.A. Sunyaev, Astron. Astrophys. 24, 337 (1973)

    ADS  Google Scholar 

  • A.P. Smale, P.T. Boyd, Astrophys. J. 756, 146 (2012)

    ADS  Google Scholar 

  • D. Steeghs, J.E. McClintock, S.G. Parsons, M.J. Reid, S. Littlefair, V.S. Dhillon, Astrophys. J. 768, 185 (2013)

    ADS  Google Scholar 

  • J.F. Steiner, J.E. McClintock, Astrophys. J. 745, 136 (2012)

    ADS  Google Scholar 

  • J.F. Steiner, J.E. McClintock, R.A. Remillard, R. Narayan, L. Gou, Astrophys. J. 701, L83 (2009a)

    ADS  Google Scholar 

  • J.F. Steiner, R. Narayan, J.E. McClintock, K. Ebisawa, Publ. Astron. Soc. Pac. 121, 1279 (2009b)

    ADS  Google Scholar 

  • J.F. Steiner, J.E. McClintock, R.A. Remillard, L. Gou, S. Yamada, R. Narayan, Astrophys. J. 718, L117 (2010)

    ADS  Google Scholar 

  • J.F. Steiner et al., Mon. Not. R. Astron. Soc. 416, 941 (2011)

    ADS  Google Scholar 

  • J.F. Steiner et al., Mon. Not. R. Astron. Soc. 427, 2552 (2012b)

    ADS  Google Scholar 

  • J.F. Steiner, J.E. McClintock, M.J. Reid, Astrophys. J. 745, L7 (2012a)

    ADS  Google Scholar 

  • J.F. Steiner, J.E. McClintock, R. Narayan, Astrophys. J. 762, 104 (2013)

    ADS  Google Scholar 

  • O. Straub et al., Astron. Astrophys. 533, A67 (2011)

    ADS  Google Scholar 

  • Y. Tanaka, W.H.G. Lewin, in X-Ray Binaries, ed. by W.H.G. Lewin, J. van Paradijs, E.P.J. van den Heuvel, (1995), pp. 126–174

    Google Scholar 

  • Y. Tanaka et al., Nature 375, 659 (1995)

    ADS  Google Scholar 

  • A. Tchekhovskoy, R. Narayan, J.C. McKinney, Astrophys. J. 711, 50 (2010)

    ADS  Google Scholar 

  • A. Tchekhovskoy, R. Narayan, J.C. McKinney, Mon. Not. R. Astron. Soc. 418, L79 (2011)

    ADS  Google Scholar 

  • G. Török, M.A. Abramowicz, W. Kluźniak, Z. Stuchlík, Astron. Astrophys. 436, 1 (2005)

    ADS  Google Scholar 

  • H. van der Laan, Nature 211, 1131 (1966)

    ADS  Google Scholar 

  • S.J. Vigeland, S.A. Hughes, Phys. Rev. D 81, 024030 (2010)

    ADS  Google Scholar 

  • X.Y. Wang, Z.G. Dai, T. Lu, Astrophys. J. 592, 347 (2003)

    ADS  Google Scholar 

  • B.L. Webster, P. Murdin, Nature 235, 37 (1972)

    ADS  Google Scholar 

  • N.E. White, P. Ghosh, Astrophys. J. 504, L31 (1998)

    ADS  Google Scholar 

  • N.E. White, F. Nagase, A.N. Parmar, in X-Ray Binaries, ed. by W.H.G. Lewin, J. van Paradijs, E.P.J. van den Heuvel, (1995), p. 1

    Google Scholar 

  • C.J. Willott, S. Rawlings, K.M. Blundell, M. Lacy, Mon. Not. R. Astron. Soc. 309, 1017 (1999)

    ADS  Google Scholar 

  • J. Wilms, A. Allen, R. McCray, Astrophys. J. 542, 914 (2000)

    ADS  Google Scholar 

  • T.-W. Wong, F. Valsecchi, T. Fragos, V. Kalogera, Astrophys. J. 747, 111 (2012)

    ADS  Google Scholar 

  • S.E. Woosley, Astrophys. J. 405, 273 (1993)

    ADS  Google Scholar 

  • S.E. Woosley, A. Heger, Astrophys. J. 637, 914 (2006)

    ADS  Google Scholar 

  • A.A. Zdziarski, J. Mikołajewska, K. Belczyński, Mon. Not. R. Astron. Soc. 429, L104 (2013)

    ADS  Google Scholar 

  • S.N. Zhang, W. Cui, W. Chen, Astrophys. J. 482, L155 (1997)

    ADS  Google Scholar 

  • Y. Zhu, S.W. Davis, R. Narayan, A.K. Kulkarni, R.F. Penna, J.E. McClintock, Mon. Not. R. Astron. Soc. 424, 2504 (2012)

    ADS  Google Scholar 

  • E.R. Zimmerman, R. Narayan, J.E. McClintock, J.M. Miller, Astrophys. J. 618, 832 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank S. W. Davis for important input on Sect. 5.3. We also thank C. Brocksopp, E. Kuulkers, M. L. McCollough, C. Sánchez-Fernández and C. Zurita for help in preparing Fig. 2; J. García and T. Fragos for their comments on a version of the manuscript; R. Fender for discussions on MeerKAT; and an anonymous referee for several important criticisms. JEM was supported in part by NASA grant NNX11AD08G and RN by NASA grant NNX11AE16G. JFS was supported by NASA Hubble Fellowship grant HST-HF-51315.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. McClintock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClintock, J.E., Narayan, R. & Steiner, J.F. Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets. Space Sci Rev 183, 295–322 (2014). https://doi.org/10.1007/s11214-013-0003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-013-0003-9

Keywords

Navigation