Skip to main content

Bioremediation: Harnessing Natural Forces for Solid Waste Management

  • Reference work entry
  • First Online:
Handbook of Solid Waste Management
  • 3431 Accesses

Abstract

Rapid growth of urbanization and industrialization plus the carefree and negligent approach of man toward the environment has incurred a negative effect on its overall quality and has led to an unprecedented burden of solid waste. Continuous and controlled accumulation of industrial and urban wastes into the environmental sink has posed a major global challenge of solid waste management that needs to be confronted with utmost prominence and diligence. Unregulated and improper disposal of solid waste poses a grave risk of environmental pollution. In this scenario, bioremediation is an invaluable toolbox for wider application in the realm of environment protection. Bioremediation is a natural biological mechanism of cycling wastes into another form that can be reused by other organisms. It offers a possibility to clean up the environment by exploiting the nutritional versatility of the microorganisms for biodegradation, detoxification, and removal of pollutants. It includes all three processes that take place in nature in order to biotransform an environment, already altered by contaminants, to its original status. Depending upon the degree of contamination, bioremediation strategies generally include bioattenuation, biostimulation, and bioaugmentation. The success of any of the strategies is ultimately dependent upon the presence of an appropriate enzyme system. Several advanced techniques applied for effective and easy remediation of waste material include bioventing, landforming, bioleaching, bioreactor, biocomposting, and phytoremediation. Logical application of bioremediation by harnessing the natural forces of biodegradation proves it to be an eco-friendly and cost-effective way to degrade, reduce, recycle, and thus manage the waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • E. Abatenh, B. Gizaw, Z. Tsegaye, M. Wassie, Microorganisms in bioremediation: A review. Open J. Environ. Biol. 2(1), 38–46 (2017). https://doi.org/10.17352/ojeb.000007

    Article  Google Scholar 

  • Z.N. Abudi, Z. Hu, N. Sun, B. Xiao, N. Rajaa, C. Liu, et al., Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio. Energy 107, 131–141 (2016). https://doi.org/10.1016/j.energy.2016.03.141

    Article  CAS  Google Scholar 

  • N. Akhtar, M. Amin-ul-Mannan, Mycoremediation: Expunging environmental pollutants. Biotechnol. Rep. 26, e00452 (2020). https://doi.org/10.1016/jbtre.2020.e00452

    Article  Google Scholar 

  • E. Amasumo, J. Baird, The concept of waste and waste management. J. Manage. Sustain. 6(4), 89–96 (2016). https://doi.org/10.5539/jms.v6n4p88

    Article  Google Scholar 

  • P.K. Arora, A. Srivastava, V.P. Singh, Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J. Bioremed. Biodegr. 1, 1–8 (2010)

    Article  Google Scholar 

  • L. Arregui, M. Ayala, X. Gómez-Gil, et al., Laccases: Structure, function and potential application in water bioremediation. Microb. Cell Factories 18, 200 (2019). https://doi.org/10.1186/s12934-019-1248-0

    Article  CAS  Google Scholar 

  • E.E. Asira, Factors that determine bioremediation of organic compounds in the soil. AJIS 2, 125–128 (2013)

    Google Scholar 

  • A.P. Athanasakoglou, Using synthetic biology to fight environmental pollution: New insights into an old problem (March 2019). https://www.theplosblog.plos.org

  • C.C. Azubuike, C.B. Chikere, G.K. Okpokwasili, Bioremediation techniques – classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32(11), 180 (2016). https://doi.org/10.1007/s11274-016-2137-x

    Article  CAS  Google Scholar 

  • R. Boopathy, Factors limiting bioremediation technologies. Bioresour. Technol. 74, 63–67 (2000). https://doi.org/10.1016/S0960-8524(99)00144-3

    Article  CAS  Google Scholar 

  • F. Bosco, C. Mollea, Mycoremediation in soil, in Environmental Chemistry and Recent Pollution Control Approaches, ed. by H. Saldarrioga Noreña, M. A. Murillo-Tovar, R. Farooq, R. Dongre, S. Riaz, (IntechOpen, 2019). https://doi.org/10.5772/intechopen.84777

    Chapter  Google Scholar 

  • D.M. Brown, D. Lyon, D.M.V. Saunders, C.B. Hughes, J.R. Wheeler, H. Shen, D. Whale, Biodegradability assessment of complex, hydrophobic substances: Insights from gas-to-liquid (GTL) fuel and solvent testing. Sci. Total Environ. 727, 138528 (2020). https://doi.org/10.1016/j.scitotenv.2020.138528

    Article  CAS  Google Scholar 

  • J.G. Burken, Uptake and metabolism of organic compounds: Green-liver model, in Phytoremediation, Transformation and Control of Contaminants, ed. by S. C. McCutcheon, J. L. Schnoor, (Wiley, Hoboken, 2003), pp. 59–84

    Chapter  Google Scholar 

  • L.M. Coelho, H.C. Renede, L.M. Coelho, P.A.R. de Souza, D.F.U. Melo, N.M.M. Coelho, Bioremediation of polluted waters using microorganisms, in Advances in Bioremediation of Wastewater and Polluted Soil, ed. by N. Shiomi, (IntechOpen, 2015). https://doi.org/10.5772/60770

    Chapter  Google Scholar 

  • J.T. Cookson Jr., Bioremediation Engineering Design and Application (McGraw Hill, New York, 1995)

    Google Scholar 

  • CPEO (The Center for Public Environmental Oversight), Bioventing. Retrieved 29 Nov 2009 (2009)

    Google Scholar 

  • C. Craig, Environmental remediation by composting. Biocycle 47(12), 18 (2006)

    Google Scholar 

  • L. Darwish, Earth Repair: A Grassroots Guide to Healing Toxic and Damaged Landscapes (New Society Publishers, Gabriola Island, BC, Canada, 2013). ISBN: 978-0-86571-729-9

    Google Scholar 

  • S. Das, H.R. Dash, Microbial bioremediation: A potential tool for restoration of contaminated areas, in Microbial Biodegradation and Bioremediation, ed. by S. Das, (Elsevier, Oxford, 2014), pp. 1–21. https://doi.org/10.1016/C2013-0-13533-7

    Chapter  Google Scholar 

  • Environmental Protection Agency (EPA), A citizens guide to natural attenuation. EPA 542-F-96-015, October (1996)

    Google Scholar 

  • Environmental Protection Agency (EPA), Engineered approaches to in situ bioremediation of chlorinated solvents: Fundamentals and field applications. EPA 542-R-00-008 (2000)

    Google Scholar 

  • Environmental Security Technology Certification Program (ESTCP), Bioaugmentation for remediation of chlorinated solvents: Technology development status and research needs (2005)

    Google Scholar 

  • V. Fonti, A. Dell’Anno, F. Beolchini, Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments? Sci. Total Environ. 563-564, 302–319 (2016). https://doi.org/10.1016/j.scitotenv.2016.04.094

    Article  CAS  Google Scholar 

  • G. Gajić, L. Djurdjević, O. Kostić, S. Jarić, M. Mitrovic, P. Pavlović, Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Front. Environ. Sci. 6, 124 (2018). https://doi.org/10.3389/fenvs.2018.00124

    Article  Google Scholar 

  • L. Gianfreda, M.A. Rao, Potential of extracellular enzymes in remediation of polluted soils: A review. Enzym. Microb. Technol. 35(4), 339–354 (2004)

    Article  CAS  Google Scholar 

  • U. Glawe, C. Visvanathan, M. Alamgir, Solid waste management in least developed Asian Countries – A comparative analysis. Paper presented at International conference on integrated solid waste management in Southeast Asian Cities, Siem Reap, Cambodia, 5–7 July 2006 (2006)

    Google Scholar 

  • H. Harms, D. Schlosser, L.Y. Wick, Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 9, 177–192 (2011). https://doi.org/10.1038/nrmicro2519

    Article  CAS  Google Scholar 

  • T.C. Hazen, In situ groundwater bioremediation, in Handbook of Hydrocarbon and Lipid Microbiology, Part IV, (Springer, Berlin/Heidelberg, 2010), pp. 2583–2596. https://doi.org/10.1007/978-3-540-77587-4191

    Chapter  Google Scholar 

  • U. Hornung, Soil venting (1997), Retrieved July 12, 2004 from http://cage.rug.ac.be/~ms/LHKW/lhkw.html

  • Applications of synthetic biology in environmental conservation. https://www.genscript.com

  • International Centre for Soil and Contaminated Sites (ICSS), Manual for biological remediation techniques (2006)

    Google Scholar 

  • Karigar CS and Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Res. Vol 2011, 805187 https://doi.org/10.4061/2011/850187, 11 p

  • P. Kidd, J. Barcelo, M.P. Bernal, I.F. Navari, C. Poschenrieder, S. Shilev, et al., Trace element behaviour at the root soil interface: Implications in phytoremediation. Environ. Exp. Bot. 67, 243–259 (2009). https://doi.org/10.1016/j.envexpbot.2009.06.013

    Article  CAS  Google Scholar 

  • M.T. Kiran, M.V. Bhaskar, A. Tiwari, Phycoremediation of eutrophic lakes using diatom algae, in Lake Sciences and Climate Change, ed. by M. N. Rashed, (IntechOpen, 2016). https://doi.org/10.5772/64111

    Chapter  Google Scholar 

  • D. Knop, O. Yarden, Y. Hadar, The lignolytic peroxidases in the genus Pleurotus: Divergence in activities, expression and potential application. Appl. Microbiol. Biotechnol. 99, 1025–1038 (2015). https://doi.org/10.1007/s00253-014-6256-8

    Article  CAS  Google Scholar 

  • T.H. Lee, I.G. Byun, Y.O. Kim, I.S. Hwang, T.J. Park, Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate. Water Sci. Technol. 53, 263–272 (2006)

    Article  CAS  Google Scholar 

  • C. Litchfield, Thirty years and counting: Bioremediation in its prime? Bioscience 55(3), 273–279 (2005)

    Article  Google Scholar 

  • B. Lukíc, A. Panico, D. Huguenot, M. Fabbricino, E.D. van Hullebusch, G. Esposito, A review on the efficiency of land farming integrated with composting as a soil remediation treatment. Environ. Technol. Rev. 6(1), 94–116 (2017). https://doi.org/10.1080/21622515.2017.1310310

    Article  CAS  Google Scholar 

  • Y. Ma, M.N.V. Prasad, M. Rajkumar, H. Freitas, Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29, 248–258 (2011). https://doi.org/10.1016/j.biotechadv.2010.12.001

    Article  CAS  Google Scholar 

  • E. Marco-Urrea, C.A. Reddy, Degradation of chloro-organic pollutants by white rot fungi, in Microbial Degradation of Xenobiotics, ed. by S. N. Singh, (Springer, Berlin/Heidelberg, 2011), pp. 31–66

    Google Scholar 

  • J.G. Mueller, C.E. Cerniglia, P.H. Pritchard, Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons, in Bioremediation: Principles and Applications, (Cambridge University Press, Cambridge, 1996), pp. 125–194

    Chapter  Google Scholar 

  • M.G. Naik, M.D. Duraphe, Parameters affecting bioremediation. Int. J. Life Sci. Pharma Res. 2(3), 77–80 (2012)

    Google Scholar 

  • C.O. Nweke, C.S. Alisi, J.C. Okolo, C.E. Nwanyanwu, Toxicity of zinc heterotrophic bacteria from a tropical river sediment. Appl. Ecol. Environ. Res. 5(1), 123–132 (2007)

    Article  Google Scholar 

  • J.W. Park, B.K. Park, J.E. Kim, Remediation of soil contaminated with 2,4- dichlorophenol by treatment of minced shepherd’s purse roots. Arch. Environ. Contam. Toxicol. 50(2), 191–195 (2006)

    Article  CAS  Google Scholar 

  • S.M. Phang, W.L. Chu, R. Rabiei, Phycoremediation, in The Algae World. Cellular Origin, Life in Extreme Habitats and Astrobiology, ed. by D. Sahoo, J. Seckbach, vol. 26, (Springer, Dordrecht, 2015), pp. 357–389

    Google Scholar 

  • E. Pilon-Smits, D.L. Le Duc, Phytoremediation of selenium using transgenic plants. Curr. Opin. Biotechnol. 20, 207–212 (2009). https://doi.org/10.1016/j.copbio.2009.02.001

    Article  CAS  Google Scholar 

  • M.D. Rane, V. Bhojwani, A study on intrinsic bioremediation. Int. J. Sci. Environ. Technol. 5(1), 152–159 (2016)

    Google Scholar 

  • M.A. Rao, R. Scelza, R. Scotti, Gianfreda, Role of enzymes in the remediation of polluted environments. J. Soil Sci. Plant Nutr. 10(3), 333–353 (2010)

    Article  Google Scholar 

  • A. Rathoure (ed.), Bioremediation: Current Research and Application. (IK International Publishing House Pvt. Ltd., 2017). ISBN: 978-93-85909-60-3 (2017)

    Google Scholar 

  • R.D. Reeves, A.J.M. Baker, Metal-accumulating plants, in Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, ed. by I. Raskin, B. D. Ensley, (Wiley, Hoboken, 2000), pp. 193–229

    Google Scholar 

  • C. Riccardi, M. Papacchini, A. Mansi, A. Ciervo, A. Petrucca, G. LaRosa, C. Marianelli, M. Muscillo, A.M. Marcelloni, S. Spicagilla, Characterization of bacterial population coming from a soil contaminated by polycyclic aromatic hydrocarbons (PAHs) able to degrade pyrene in slurry phase. Ann. Microbiol. 55(2), 85–90 (2005)

    CAS  Google Scholar 

  • E. Rodríguez, O. Nuero, F. Guillén, A.T. Martínez, M.J. Martínez, Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: The role of laccase and versatile peroxidase. Soil Biol. Biochem. 36, 909–916 (2004)

    Article  Google Scholar 

  • T.P. Ruggaber, J.W. Talley, Enhancing bioremediation with enzymatic processes: A review. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 10(2), 73–85 (2006)., Special Issue: Bioremediation

    Article  CAS  Google Scholar 

  • C. Scott, G. Pandey, C.J. Hartley, C.J. Jackson, M.J. Chessman, M.C. Taylor, R. Pandey, J.C. Khurana, M. Teese, C.W. Loppin, K.M. Weir, R.K. Jain, R. Lal, R.J. Russel, J.G. Oakeshott, The enzymatic basis for pesticide bioremediation. Indian J. Microbiol. 48(1), 65–79 (2008). https://doi.org/10.1007/s12088-008-0007-4

    Article  CAS  Google Scholar 

  • A. Sharma, T. Sharma, T. Sharma, S. Sharma, S.S. Kanwar, Role of microbial hydrolases in bioremediation, in Microbes and Enzymes in Soil Health and Bioremediation, ed. by A. Kumar, S. Sharma, (2019), pp. 149–164. https://doi.org/10.1007/978-981-13-9117-07

    Chapter  Google Scholar 

  • A. Silva, C. Delerue-Matos, S.A. Figueiredo, O.M. Freitas, The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: A review. Water 11, 1555 (2019). https://doi.org/10.3390/w11081555

    Article  CAS  Google Scholar 

  • A.C. Singer, C.J. van der Gast, I.P. Thompson, Perspectives and visions for strain selection in bioaugmentation. Trends Biotechnol. 23, 74–77 (2005)

    Article  CAS  Google Scholar 

  • H. Srichandan, R.K. Mohapatra, P.K. Darhi, S. Mishra, Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy 189, 105122 (2019). https://doi.org/10.1016/j.hydromet.2019.105122

    Article  CAS  Google Scholar 

  • J. Srivastava, R. Narain, S.J.S. Kalra, H. Chandra, Advances in microbial bioremediation and the factors influencing the process. Int. J. Environ. Sci. Technol. 11, 1783–1800 (2014). https://doi.org/10.1007/s13762-013-0412-z

    Article  CAS  Google Scholar 

  • D.M. Sylvia, J.J. Fuhrmann, P.G. Hartel, D. Zuberer, Principle and Applications of Soil Microbiology (Prentice Hall, Upper Saddle River, 2005), p. 550

    Google Scholar 

  • M. Tekere, Microbial bioremediation and different bioreactors designs applied, in Biotechnology and Bioengineering, ed. by E. Jacob-Lopes, L. Q. Zepka, (IntechOpen, 2019). https://doi.org/10.5772/intechopen.83661

    Chapter  Google Scholar 

  • B. Thapa, K.C. Ajay, A. Ghimire, A review on bioremediation of petroleum contaminants in soil. Kathmandu Univ. J. Sci. Eng. Technol. 8(1), 164–170 (2012)

    Article  Google Scholar 

  • J.M. Tiedje, Bioremediation from an ecological perspective. In situ bioremediation: When does it work? (1993), pp. 110–120

    Google Scholar 

  • X. Wang, F. Aulenta, S. Puig, A. Esteve-Núñez, Y. He, Y. Mu, K. Rabaey, Microbial electrochemistry for bioremediation. Environ. Sci. Ecotechnol. 1 (2020). https://doi.org/10.1016/j.ese.100013

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sahota, N.K., Sharma, R. (2022). Bioremediation: Harnessing Natural Forces for Solid Waste Management. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-4230-2_107

Download citation

Publish with us

Policies and ethics