Skip to main content
Log in

Advances in microbial bioremediation and the factors influencing the process

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Irrational and rapid global human societal development has culminated to a condition of environmental deterioration. Accidental leakage and deliberate use of organic and inorganic chemicals have contaminated the environment up to the level of ecosystem. Advancements have been made in the field of research on bioremediation of the hazardous contaminants especially in last three decades. Microbial bioremediation has been the most understood biotechnological process of environmental restoration. Bacteria and fungi because of their inherent ability to adapt and grow in extreme environments have been employed for either removal or degradation of the chemical contaminants. Researchers all over the world are getting breakthroughs in finding new bacterial strains having plasmid linked degradation/reduction ability. Molecular biology and genetic engineering helped in crafting the microbes for the desired results on environment. Despite having favorable conditions, microbial remediation largely depends on environmental factors and on the basic biological characters of microbes, especially bacteria being Gram-positive or Gram-negative. Metagenomic studies revealed the importance of microbial ecology as microbes work well in community, i.e., consortia. This review along with several other studies suggests the need of precision during microbial community identification, substrate specificity and the designing of microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    CAS  Google Scholar 

  • Alquati C, Papacchini M, Riccardi C, Spieaglia S, Bestetti G (2005) Diversity of naphthalene degrading bacteria from a petroleum contaminated soil. Ann Microbiol 55(4):237–242

    CAS  Google Scholar 

  • Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb Technol 37:487–496

    CAS  Google Scholar 

  • Arriagada CA, Herrera MA, Borie F, Ocampo JA (2007) Contribution of arbuscular mycorrhizal and saprobe fungi to the aluminum resistance of Eucalyptus globulus. Water Air Soil Poll 182:383–394

    CAS  Google Scholar 

  • Badri DV, Weir TL, Van-der-Lelie D, Vivance JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  Google Scholar 

  • Baldrian P, Šnajdr J, Merhautova V, Dobiášová P, Cajthaml T, Valášková V (2013) Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol Biochem 56:60–68

    CAS  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feed backs. ISME J 2:805–814

    CAS  Google Scholar 

  • Barriault D, Plante MM, Sylvestre M (2002) Family shuffling of a targeted bphA region to engineer biphenyl dioxygenase. J Bacteriol 184:3794–3800

    CAS  Google Scholar 

  • Bayramoğlu G, Çelik G, Arica MY (2006) Studies on accumulation of uranium by fungus Lentinus sajor-caju. J Hazard Mater 136(2):345–353

    Google Scholar 

  • Beard SJ, Hughes MN, Poole RK (1995) Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiol Lett 131:205–210

    CAS  Google Scholar 

  • Blázquez G, Hernáinz F, Calero M, Martin-Lara MA, Tenorio G (2008) The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone. Chem Eng J 148:473–479

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Biores Technol 74:63–67

    CAS  Google Scholar 

  • Bosch R, Garcia-Valdez E, Moore ER (2000) Complete nucleotide sequence and evolutionary significance of chromosomally encoded naphthalene degradation lower pathway from Pseudomonas stutzeri AN10. Gene 245:65–74

    CAS  Google Scholar 

  • Bulter T, Alcade M, Steber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microb 69:987–995

    CAS  Google Scholar 

  • Cardenas E, Wu W, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis PK, Jardin PM, Zhou J, Criddle CS, Marsh TL, Tiedje JM (2008) Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Appl Environ Microb 74(12):3718–3729

    CAS  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microb 76(4):999–1007

    CAS  Google Scholar 

  • Chakraborty R, O’Connor SM, Chan E, Coates JD (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl Environ Microb 71:8649–8655

    CAS  Google Scholar 

  • Chakraborty S, Pangga IB, Roper AM (2012) Climate change and multitrophic interactions in soil: the primacy of plants and functional domains. Glob Change Biol 18:2111–2125

    Google Scholar 

  • Chaloupkova R, Sykorova J, Prokop Z, Jesenska A, Monincova M, Pavlova M, Tsuda M, Nagata Y, Damborsky J (2003) Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem 278:52622–52628

    CAS  Google Scholar 

  • Chiang SY, Mora R, Diquiseppi WH, Davis G, Sublette K, Gedalanga P, Mahendra S (2012) Characterizing the intrinsic bioremediation potential of 1, 4-dioxane and trichloroethene using innovative environmental diagnostic tools. J Environ Monit 14(9):2317–2326

    CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation – the prospects for practical applications. Environ Int 36:299–307

    Google Scholar 

  • Churchill SA, Waiters JV, Churchill PF (1995) Sorption of heavy metals by prepared bacterial cell surfaces. J Environ Eng 121(10):706–711

    Google Scholar 

  • Contzen M, Stolz A (2000) Characterization of the genes for two protocatechuate 3,4-dioxygenases from the 4-sulfocatechol-degrading bacterium Agrobacterium radiobacter Strain S2. J Bacteriol 182(21):6123–6129

    CAS  Google Scholar 

  • De Rore H, Demolder K, De Wilde K, Top E, Houwen F, Verstraete W (1994) Transfer of the catabolic plasmid RP4:Tn4371 to indigenous soil bacteria and its effect on respiration and biphenyl breakdown. FEMS Microbiol Ecol 15:71–81

    CAS  Google Scholar 

  • El-Deeb B (2009) Natural combinations of genetic systems for degradation of phenol and resistance to heavy metals in phenol and cyanide assimilating bacteria. Malay J Microbiol 5(2):94–103

    Google Scholar 

  • Endy D (2005) Foundation for engineering biology. Nature 438:449–453

    CAS  Google Scholar 

  • Fennell DE, Du S, Liu H, Liu F, Häggblom MM (2011) Dehalogenation of polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls and brominated flame retardants and potential as a bioremediation strategy. In: Moo-Young M, Butler M, Webb C, Moreira A, Grodzinski B, Cui ZF, Agathos S (eds) Comprehensive biotechnology, 2nd edn. Pergamon Press, Oxford, pp 136–149

    Google Scholar 

  • Finnegan I, Toerien S, Abbot L, Smit F, Raubenheimer HG (1991) Identification and characterization of an Acinetobacter sp. capable of assimilation of a range of cyano-metal complexes, free cyanide ions and simple organic nitriles. Appl Microbiol Biotechnol 36:142–144

    CAS  Google Scholar 

  • Fragoeiro S (2005) Use of fungi in bioremediation of pesticides [dissertation]. Cranfield University, Bedford

    Google Scholar 

  • Fragoeiro S, Magan N (2008) Impact of Trametes versicolor and Phanerochaete crysosporium on differential breakdown of pesticide mixtures in soil microcosm at two water potential and associated respiration and enzyme activity. Int Biodeterior Biodegradation 62:376–383

    CAS  Google Scholar 

  • Frey SD, Drijber R, Smith H, Melillo J (2008) Microbial biomass functional capacity and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907

    CAS  Google Scholar 

  • Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3:395–398

    CAS  Google Scholar 

  • Furukawa K, Miyazaki T (1986) Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol 166(2):392–398

    CAS  Google Scholar 

  • Gadd GM (2001) Fungi in bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Euro J Mineral Process Environ Prot 3(1):58–66

    Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    CAS  Google Scholar 

  • Golubev SN, Schelud’ko A, Muratova AY, Makarov OE, Turkovskaya OV (2009) Assessing the potential of rhizobacteria to survive under phenanthrene pollution. Water Air Soil Poll 198(1–4):5–16

    CAS  Google Scholar 

  • Goyal N, Jain SC, Banerjee UC (2003) Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res 7:311–319

    CAS  Google Scholar 

  • Greated A, Lambertsen L, Williams PA, Thomas CM (2002) Complete sequence of the IncP-9 TOL plasmid PWW0 from Pseudomonas putida. Environ Microbiol 4:856–871

    CAS  Google Scholar 

  • Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas sp. to the polycyclic aromatic hydrocarbon, naphthalene. Appl Environ Microbiol 63:4111–4115

    CAS  Google Scholar 

  • Grosser RJ, Friedrich M, Ward DM, Inskeep WP (2000) Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl Environ Microbiol 66:2695–2702

    CAS  Google Scholar 

  • Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solution. Curr Sci India 78:967–973

    CAS  Google Scholar 

  • Han X, Gu J (2010) Sorption and transformation of toxic metals by microorganisms. In: Mitchell R, Gu J (eds) Environmental microbiology. Wiley Blackwell Pub, Hoboken

    Google Scholar 

  • Harrison MJ (2005) Signaling in arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    CAS  Google Scholar 

  • Hedlund BP, Staley JT (2001) Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)—degrading marine bacteria. Int J Syst Evol Microbiol 51:61–66

    CAS  Google Scholar 

  • Hendricks JK, Mobley HL (1997) Helicobacter pylori ABC transporter: effect of allelic exchange mutagenesis on urease activity. J Bacteriol 179(18):5892–5902

    CAS  Google Scholar 

  • Hesham Ael-L, Khan S, Tao Y, Li D, Zhang Y, Yang M (2012) Biodegradation of high molecular weight PAHs using isolated yeast mixtures: application of metagenomic methods for community structure analyses. Environ Sci Pollut Res Int 19(8):3568–3578

    CAS  Google Scholar 

  • Hiraishi A (2008) Biodiversity of dehalorespiring bacteria with special emphasis on polychlorinated biphenyl/dioxin dechlorinators. Microbes Environ 23:1–12

    Google Scholar 

  • Hong SH, Jeong HD, Jung B, Lee EY (2012) Analysis and quantification of ammonia-oxidizing bacteria community with amo A gene in sewage treatment plants. J Microbiol Biotechnol 22(9):1193–1201

    CAS  Google Scholar 

  • Huang CC, Narita M, Yamagata T, Itoh Y, Endo G (1999) Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234:361–369

    CAS  Google Scholar 

  • Ingham CJ, Sprenkels A, Bomer J, Molenaar D, Van Den Berg A, van Hylckama Vlieg JE, de Vos WM (2007) The micro Petri dish, a million-well growth chip for the culture and high- throughput screening of microorganisms. Proc Natl Acad Sci USA 104:18217–18222

    CAS  Google Scholar 

  • Jadhav JP, Parshetti GK, Kalme SD, Govindwar SP (2007) Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463. Chemosphere 68:394–400

    CAS  Google Scholar 

  • Joerger TK, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal accumulating-bacteria and their potential for material science. Trends Biotechnol 19:15–20

    Google Scholar 

  • Kabata-Pendius A, Mukherjee AB (2007) Trace elements from soil to human. Springer, New York

    Google Scholar 

  • Kaewsarn P, Yu Q (2001) Cadmium (II) removal from aqueous solutions by pre-treated biomass of marine algae (Padina sp). Environ Pollut 112:209–213

    CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from ground waters. Wat Res 38:17–26

    CAS  Google Scholar 

  • Kim SU, Cheong YH, Seo DC, Hur JS, Heo JS, Cho JS (2007) Characterization of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.). Water Sci Technol 55(1–2):105–111

    CAS  Google Scholar 

  • Koren O, Knezevic V, Ron EZ, Rosenberg E (2003) Petroleum pollution bioremediation using water-insoluble uric acid as the nitrogen source. Appl Environ Microbiol 69(10):6337–6339

    CAS  Google Scholar 

  • Lăzăroaie MM (2010) Multiple response of gram positive and gram negative bacteria to mixture of hydrocarbons. Braz J Microbiol 41:649–667

    Google Scholar 

  • Leahy JG, Tracy KD, Eley MH (2003) Degradation of mixtures of aromatic and aliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria. FEMS Microbiol Ecol 43(2):271–276

    CAS  Google Scholar 

  • Li W, Shi J, Wang X, Han Y, Tong W, Ma L, Liu B, Cai B (2004) Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-I from Pseudomonas sp. strain ND6. Gene 336:231–240

    CAS  Google Scholar 

  • Lovely DR (2003) Cleaning up with genomics applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44

    Google Scholar 

  • Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotech 8:285–289

    Google Scholar 

  • Lovely DR, Lloyd JR (2000) Microbes with a metal for bioremediation. Nat Biotechnol 18:600–601

    Google Scholar 

  • Lü Z, Sang L, Li Z, Min H (2009) Catalase and superoxide dismutase activities in a Stenotrophomonas maltophilia WZ2 resistant to herbicide pollution. Ecotoxicol Environ Saf 72:136–143

    Google Scholar 

  • Luef B, Fakra SC, Csencsits R, Wrighton KC, Williams KH, Wilkins MJ, Downing KH, Long PE, Comolli LR, Banfield JF (2013) Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME J 7:338–350

    CAS  Google Scholar 

  • Mabbett AN, Lloyd JR, Macaskie LE (2002) Effect of complexing agents on reduction of Cr(VI) by Desulfovibrio vulgaris ATCC 29579. Biotechnol Bioeng 79:389–397

    CAS  Google Scholar 

  • Maeda K, Nojiri H, Shintani H, Yoshida T, Habe H, Omori T (2003) Complete nucleotide sequence of carbazole/dioxin degrading plasmid pCAR1in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J Mol Biol 326:21–23

    CAS  Google Scholar 

  • Magan N, Fragoeiro S, Bastos C (2010) Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiol 38(4):238–248

    Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    CAS  Google Scholar 

  • Maphosa F, Smidt H, De Vos WM, Roling WFM (2010) Microbial community and metabolite dynamics of an anoxic dechlorinating bioreactor. Environ Sci Technol 44:4884–4890

    Google Scholar 

  • Maphosa F, Lieten SH, Dinkla I, Stams AJ, Smidt H, Fennell DE (2012) Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites. Front Microbiol 3:1–14

    Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    CAS  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40:339–346

    CAS  Google Scholar 

  • Mars AE, Kasberg T, Kaschabek SR, van-Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537

    CAS  Google Scholar 

  • Martínez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697

    Google Scholar 

  • Meehan C, Banat IM, McMullan G, Nigam P, Smyth F, Marchant R (2000) Decolorization of remazol black—B using q thermotolerant yeast Kluyveromyces marxianus IMB3. Environ Int 26(1–2):75–79

    CAS  Google Scholar 

  • Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 9:17–24

    CAS  Google Scholar 

  • Mikulasova M, Kosikova B, Alexy P, Kacik F, Urgelova E (2001) Effect of blending lignin biopolymer on the biodegradability of polyolefin plastics. World J Microbiol Biotechnol 17:601–607

    CAS  Google Scholar 

  • Minz D, Rosenburg E, Ron EZ (1996) Cadmium binding bacteria: screening, and characterization of new isolates and mutants. FEMS Microbiol Lett 135:191–194

    CAS  Google Scholar 

  • Moris JM, Jin S (2012) Enhanced biodegradation of hydrocarbon contaminated sediments using microbial fuel cells. J Hazard Mater 30(213–214):474–477

    Google Scholar 

  • Murugesan K (2003) Bioremediation of paper and pulp mill effluents. J Exp Biol 41(11):1239–1248

    CAS  Google Scholar 

  • Nam K, Rodriguez W, Kukor JJ (2001) Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45:11–20

    CAS  Google Scholar 

  • Naraian R, Ram S, Kaistha SD, Srivastava J (2012) Occurrence of plasmid linked multiple drug resistance in bacterial isolates of tannery effluent. Cell Mol Biol 58(1):134–141

    CAS  Google Scholar 

  • Narancic T, Djokic L, Kenny ST, O’Connor KE, Rodulovic V, Nikodinovic-Runic J, Vasilijevic B (2012) Metabolic versatility of gram positive microbial isolates from contaminated river sediments. J Hazard Mater 15(215–216):243–251

    Google Scholar 

  • Nie M, Pendall E, Bell C, Gasch CK, Raut S, Tamang S, Wallenstein MD (2013) Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol Lett 16(2):234–241

    Google Scholar 

  • Nweke CO, Alisi CS, Okolo JC, Nwanyanwu CE (2007) Toxicity of zinc heterotrophic bacteria from a tropical river sediment. Appl Ecol Environ Res 5(1):123–132

    Google Scholar 

  • Ogawan N, Miyashita K (1999) The chloro catechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9 carrying a gene cluster highly homologous to that in the 1, 2, 4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl Environ Microbiol 65:724–731

    Google Scholar 

  • Pandey G, Jain RK (2002) Bacterial chemotaxis towards environmental pollutants: role in bioremediation. Appl Environ Microbiol 68(12):5789–5795

    CAS  Google Scholar 

  • Pandey BV, Upadhyay RS (2010) Pseudomonas fluorescens can be used for bioremediation of textile effluent direct orange—102. Tropical Ecol 51(2S):397–403

    CAS  Google Scholar 

  • Parales RE, Ditty JL, Harwood CS (2000) Toluene degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene and trichloroethylene. Appl Environ Microbiol 66:4098–4104

    CAS  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23(3):135–142

    CAS  Google Scholar 

  • Pazirandeh M, Chrisey LA, Mauro JM, Campbell JR, Gaber BP (1995) Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effects on heavy-metal uptake. Appl Microbiol Biotechnol 43:1112–1117

    CAS  Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotech 11:262–270

    CAS  Google Scholar 

  • Puzon GJ, Roberts AG, Kramer DM, Xun L (2005) Formation of soluble organo-chromium (III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol 39:2811–2817

    CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298

    CAS  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2002) Current perspective in nickel bioremediation strategies. Indian J Microbiol 42:1–9

    Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    CAS  Google Scholar 

  • Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86

    CAS  Google Scholar 

  • Riccardi C, Papacchini M, Mansi A, Ciervo A, Petrucca A, LaRosa G, Marianelli C, Muscillo M, Marcelloni AM, Spicagilla S (2005) Characterization of bacterial population coming from a soil contaminated by polycyclic aromatic hydrocarbons (PAHs) able to degrade pyrene in slurry phase. Ann Microbiol 55(2):85–90

    CAS  Google Scholar 

  • Robles-Gonzalez IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Factor 7(5):1–16

    Google Scholar 

  • Romine MF, Stillwell LC, Wong K, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999) Complete sequence of 184 kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181(5):1585–1602

    CAS  Google Scholar 

  • Rui L, Cao L, Chen W, Reardon KF, Wood TK (2004a) Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1, 2- dichloroethylene in cells expressing an evolved toluene orthomonooxygenase. J Biol Chem 279:46810–46817

    CAS  Google Scholar 

  • Rui L, Kwon YM, Reardon KF, Wood TK (2004b) Metabolic pathway engineering to enhance aerobic degradation of chlorinated ethenes and to reduce their toxicity by cloning a novel glutathione S-transferase, an evolved toluene ortho-monooxygenase, and gamma-glutamylcysteine synthetase. Environ Microbiol 6:491–500

    CAS  Google Scholar 

  • Sag Y, Ozer D, Kustal T (1995) A comparative study of the biosorption of lead (II) ions to Zoogloea ramigera and Rhizopus arrhizus. Process Biochem 30:169–174

    CAS  Google Scholar 

  • Samuelson P, Wernerus H, Svedberg M, Sthal S (2000) Staphylococcal surface display of metal binding polyhistidyl peptides. Appl Environ Microbiol 66:1243–1248

    CAS  Google Scholar 

  • Sar P, D’Souza SF (2001) Biosorptive uranium uptake by a Pseudomonas, strain: characterization and equilibrium studies. J Chem Technol Biotechol 76(12):1286–1294

    CAS  Google Scholar 

  • Schmidt T, Schlegel HG (1994) Combined nickel cobalt-cadmium resistance encoded by the ncc locus of Alcaligens xylosoxidans 31A. J Bacteriol 176(22):7045–7054

    CAS  Google Scholar 

  • Schmidt KR, Chand S, Gostomski PA, Boyd-Wilson KS, Ford C, Walter M (2005) Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil. Biotechnol Prog 21:377–385

    CAS  Google Scholar 

  • Segura A, Hurtado A, Rivera B, Lăzăroaie MM (2008) Isolation of new toluene-tolerant marine strains of bacteria and characterization of their solvent-tolerance properties. J Appl Microbiol 104:1408–1416

    CAS  Google Scholar 

  • Shintani M, Urata M, Inove K, Eto K, Habe H, Omori T, Yamane H, Nojiri H (2007) The Sphingomonas plasmid pCAR3 is involved in complete mineralization of carbazole. J Bacteriol 189(5):2007–2020

    CAS  Google Scholar 

  • Shukla OP, Rai UN (2006) Hexavalent chromium induced changes in growth and biochemical responses of chromate-resistant bacterial strains isolated from tannery effluent. Bull Environ Contam Toxicol 77:96–103

    CAS  Google Scholar 

  • Shukla OP, Rai UN, Dubey S (2009) Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L. Biores Technol 100:2198–2203

    CAS  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397

    CAS  Google Scholar 

  • Sowerby A, Emmett B, Beier C, Tietema A, Periuelas J, Estiarte M, van Meeteren MJM, Hughes S, Freeman C (2005) Microbial community changes in heath land soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biol Biochem 37(10):1805–1813

    CAS  Google Scholar 

  • Srivastava J, Chandra H, Tripathi K, Naraian R, Sahu RK (2008) Removal of chromium (VI) through biosorption by the Pseudomonas spp. isolated from tannery effluent. J Basic Microb 48:135–139

    CAS  Google Scholar 

  • Srivastava J, Shukla D, Chand V, Naraian R, Chandra H, Nautiyal AR (2010) Mycorrhizal colonization affects the survival of Vetiveria zizanioides (L.) Nash grown in water containing As (III). Clean-soil Air. Water 38(8):771–774

    CAS  Google Scholar 

  • Tan WS, Ting AS (2012) Efficacy and reusability of alginate-immobilized live and heat inactivated Trichoderma asperellum cells for Cu (II) removal from aqueous solutions. Biores Technol 123:290–295

    CAS  Google Scholar 

  • Torres-Bojorges AX, Buitrón G (2012) Biodegradation of nonylphenols using nitrifying sludge, 4-chlorophenol adapted consortia and activated sludge in liquid and solid phases. Environ Technol 33(13–15):1727–1737

    CAS  Google Scholar 

  • Toyama T, Furukawa T, Maeda N, Inoue D, Sei K, Mori K, Kikuchi S, Ike M (2011) Accelerated biodegradation of pyrene and benzo(a)pyrene in the Phragmites australis rhizosphere by bacteria-root exudates interactions. Water Res 45(4):1629–1638

    CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    CAS  Google Scholar 

  • Vasudevan P, Padmavathy V, Tewari N, Dhingra SC (2001) Biosorption of heavy metal ions. J Sci Ind Res 60:112–120

    CAS  Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotech 12:237–241

    CAS  Google Scholar 

  • Watanabe K, Watanabe K, Kodoma Y, Syutsubo K, Harayama S (2000) Molecular characterization of bacterial populations in petroleum contaminated groundwater discharged from underground crude oil storage cavities. Appl Environ Microbiol 66:4803–4809

    CAS  Google Scholar 

  • Weber KP, Leqqe RL (2013) Comparison of the catabolic activity and catabolic profiles of rhizospheric gravel associated and interstitial microbial communities in treatment wetlands. Water Sci Technol 67(4):886–893

    CAS  Google Scholar 

  • Wei Z, Xi B, Zhao Y, Wang S, Liu H, Jiang Y (2007) Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere 68:368–374

    CAS  Google Scholar 

  • Widada J, Nojiri H, Omori T (2002) Recent developments in molecular techniques for identification and monitoring of xenobiotic degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol 60:45–59

    CAS  Google Scholar 

  • Wong PK, Yuen PY (1998) Decolourization and biodegradation of N, Ń-dimethyl-p-phenylenediamine by Klebsiella pneumoniae RS-13 and Acetobacter liquefaciens S-1. J Appl Microbiol 85:79–87

    CAS  Google Scholar 

  • Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    CAS  Google Scholar 

  • Wood JM, Wang HK (1985) Microbial resistance to heavy metals. In: Ingrolic KJ, Martel AE (eds) Environmental inorganic chemistry. Wiley-VCH Publishers Inc, Dear Field Beach, pp 487–512

    Google Scholar 

  • Xiong W, Mathies C, Bradshaw K, Carlson T, Tang K, Wang Y (2012) Benzene removal by a novel modification of enhanced anaerobic biostimulation. Water Res 46(15):4721–4731

    CAS  Google Scholar 

  • Yadav M, Yadav KS (2008) Decolorization of pulp paper mill effluent by Pleurotus sajor-caju. J Environ Sci Eng 50(2):89–92

    CAS  Google Scholar 

  • Yassine MH, Suidan MT, Venosa AD (2013) Microbial kinetic model for the degradation of poorly soluble organic materials. Water Res 47(4):1585–1595

    CAS  Google Scholar 

  • Yen KM, Serdar CM (1988) Genetics of naphthalene catabolism by Pseudomonas. Crit Rev Microbiol 15:247–268

    CAS  Google Scholar 

  • Zahir Z, Seed KD, Dennis TJ (2006) Isolation and characterization of novel organic solvent tolerant bacteria. Extremophiles 10:129–138

    CAS  Google Scholar 

  • Zhang SY, Wang QF, Xie SG (2012) Molecular characterization of phenanthrene-degrading methanogenic communities in leachate-contaminated aquifer sediment. Int J Environ Sci 9(4):705–712

    CAS  Google Scholar 

  • Zhou J, Jiang W, Ding J, Zhang X, Gao S (2007) Effect of tween 80 and beta-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by white rot fungi. Chemosphere 70(2):172–177

    CAS  Google Scholar 

  • Zhuang L, Gui L, Gillham RW (2012) Biodegradation of pentaerythritol tetranitrate (PETN) by anaerobic consortia from a contaminated site. Chemosphere 89(7):810–816

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to appreciate all who supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, J., Naraian, R., Kalra, S.J.S. et al. Advances in microbial bioremediation and the factors influencing the process. Int. J. Environ. Sci. Technol. 11, 1787–1800 (2014). https://doi.org/10.1007/s13762-013-0412-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0412-z

Keywords

Navigation