Skip to main content

Targeted Cancer Therapy: KRAS-Specific Treatments for Pancreatic Cancer

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Pancreatic cancer is highly dependent on the activity of the KRAS oncogene, which controls the redox homeostasis and induces metabolic reprogramming. Since KRAS is critical for the growth of ~30% of human tumors, targeting this oncogene is a high priority in cancer therapy. Despite its proven importance in cancer, the numerous efforts over the last three decades to develop inhibitors for protein KRAS or for downstream signaling pathways have not reached the clinic. For this reason, the KRAS oncogene has been for a long time considered undruggable. Two sequence elements of KRAS, located in the promoter and 5′-untranslated region (UTR), have high guanine content that allows folding into G-quadruplex (G4) structures. The G4 motif near the transcription initiation site called 32R acts as a hub for transcription factors, making it an attractive target for small molecules capable of competing DNA-protein interactions. In addition, the 5′-UTR of mRNA folds into a complex tertiary structure in which three nonoverlapping G4 motifs near the 5′-cap form RNA G-quadruplexes that are recognized by cationic porphyrins: photosensitizers that, when irradiated, can generate the strong oxidant singlet oxygen 1O2, which degrades mRNA and inhibits translation. In addition, other KRAS targeting mechanisms based on the use of decoy oligonucleotides mimicking the critical promoter G4 structure and miRNA 216b targeting the 3′-UTR sequence are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alemasova EE, Lavrik OI (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res 47:3811–3827

    Article  CAS  Google Scholar 

  • Awasthi N, Monahan S, Stefaniak A et al (2017) Inhibition of the MEK/ERK pathway augments nab-paclitaxel-based chemotherapy effects in preclinical models of pancreatic cancer. Oncotarget 9:5274–5286

    Article  Google Scholar 

  • Belotserkovskii BP, Liu R, Tornaletti S et al (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc Natl Acad Sci 107:12816–12821

    Article  CAS  Google Scholar 

  • Belotserkovskii BP, Soo Shin JH, Hanawalt PC (2017) Strong transcription blockage mediated by R-loop formation within a G-rich homopurine-homopyrimidine sequence localized in the vicinity of the promoter. Nucleic Acids Res 45:6589–6599

    Article  CAS  Google Scholar 

  • Brito H, Martins AC, Lavrado J et al (2015) Targeting KRAS oncogene in colon cancer cells with 7-carboxylate Indolo[3,2-b]quinoline tri-alkylamine derivatives. PLoS One 10:e0126891

    Article  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  CAS  Google Scholar 

  • Calabrese DR, Zlotkowski K, Alden S et al (2018) Characterization of clinically used oral antiseptics as quadruplex-binding ligands. Nucleic Acids Res 46:2722–2732

    Article  CAS  Google Scholar 

  • Chen K, Zhang Y, Qian L et al (2021) Emerging strategies to target RAS signaling in human cancer therapy. J Hematol Oncol 14:116

    Article  CAS  Google Scholar 

  • Cinque G, Ferino A, Pedersen EB et al (2020) Role of poly [ADP-ribose] polymerase 1 in activating the Kirsten ras (KRAS) gene in response to oxidative stress. Int J Mol Sci 21:6237–6259

    Article  CAS  Google Scholar 

  • Cogoi S, Xodo LE (2006) G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res 34:2536–2549

    Article  CAS  Google Scholar 

  • Cogoi S, Xodo LE (2016) G4 DNA in ras genes and its potential in cancer therapy. Biochim Biophys Acta 1859:663–674

    Article  CAS  Google Scholar 

  • Cogoi S, Paramasivam M, Spolaore B et al (2008) Structural polymorphism within a regulatory element of the human KRAS promoter: formation of G4-DNA recognized by nuclear proteins. Nucleic Acids Res 36:3765–3780

    Article  CAS  Google Scholar 

  • Cogoi S, Zorzet S, Rapozzi V et al (2013) MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res 41:4049–4064

    Article  CAS  Google Scholar 

  • Cogoi S, Shchekotikhin AE, Xodo LE (2014) HRAS is silenced by two neighboring G-quadruplexes and activated by MAZ, a zinc-finger transcription factor with DNA unfolding property. Nucleic Acids Res 42:8379–8388

    Article  CAS  Google Scholar 

  • Cogoi S, Ferino A, Miglietta G et al (2018) The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res 46:661–676

    Article  CAS  Google Scholar 

  • Collins MA, Bednar F, Zhang Y et al (2012) Oncogenic KRAS is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122:639–653

    Article  CAS  Google Scholar 

  • Conrad M, Friedmann Angeli JP (2015) Glutathione peroxidase 4 (Gpx4) and ferroptosis: what’s so special about it? Mol Cell Oncol 2:e995047

    Article  Google Scholar 

  • Conrad M, Pratt DA (2019) The chemical basis of ferroptosis. Nat Chem Biol 15:1137–1147

    Article  CAS  Google Scholar 

  • Conroy T, Hammel P, Hebbar M et al (2018) FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med 379:2395–2406

    Article  CAS  Google Scholar 

  • Cox AD, Der CJ, Philips MR (2015) Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin Cancer Res 21:1819–1827

    Article  CAS  Google Scholar 

  • Davis S, Lollo B, Freier S, Esau C (2006) Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34:2294–2304

    Article  CAS  Google Scholar 

  • Davis S, Propp S, Freier SM et al (2009) Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res 37:70–77

    Article  CAS  Google Scholar 

  • Di Giorgio E, Ferino A, Choudhary H et al (2022) Photosensitization of pancreatic cancer cells by cationic alkyl-porphyrins in free form or engrafted into POPC liposomes: the relationship between delivery mode and mechanism of cell death. J Phochem Photobiol B 231:112449

    Article  Google Scholar 

  • Di Magliano MP, Logsdon CD (2013) Roles for KRAS in pancreatic tumor development and progression. Gastroenterology 144:1220–1229

    Article  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  Google Scholar 

  • Dunnett-Kane V, Burkitt-Wright E, Blackhall F et al (2020) Germline and sporadic cancers driven by the RAS pathway: parallels and contrasts. Ann Oncol 31:873–883

    Article  CAS  Google Scholar 

  • Eddy J, Vallur AC, Varma S et al (2011) G4 motifs correlate with promoter-proximal transcriptional pausing in human genes. Nucl Acids Res 39:4975–4983

    Article  CAS  Google Scholar 

  • Edwards AD, Marecki JC, Byrd AK et al (2021) G-Quadruplex loops regulate PARP-1 enzymatic activation. Nucleic Acids Res 49:416–431

    Article  CAS  Google Scholar 

  • Eser S, Reiff N, Messer M et al (2013) Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23:406–420

    Article  CAS  Google Scholar 

  • Eser S, Schnieke A, Schneider G et al (2014) Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer 111:817–822

    Article  CAS  Google Scholar 

  • Eustermann S, Videler H, Yang JC et al (2011) The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J Mol Biol 407:149–170

    Article  CAS  Google Scholar 

  • Fan Z, Fan K, Yang C et al (2018) Critical role of KRAS mutation in pancreatic ductal adenocarcinoma. Transl Cancer Res 7:1728–1736

    Article  CAS  Google Scholar 

  • Ferino A, Miglietta G, Picco R et al (2018) MicroRNA therapeutics: design of single-stranded miR-216b mimics to target KRAS in pancreatic cancer cells. RNA Biol 15:1273–1285

    Article  Google Scholar 

  • Ferino A, Nicoletto G, D’Este F et al (2020) Photodynamic therapy for ras-driven cancers: targeting G-Quadruplex RNA structures with bifunctional alkyl-modified porphyrins. J Med Chem 63:1245–1260

    Article  CAS  Google Scholar 

  • Ferino A, Marquevielle J, Choudhary H et al (2021) hnRNPA1/UP1 unfolds KRAS G-quadruplexes and feeds a regulatory axis controlling gene expression. ACS Omega 6:34092–34106

    Article  CAS  Google Scholar 

  • Gupte R, Liu Z, Kraus WL (2017) Parp and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31:101–126

    Article  CAS  Google Scholar 

  • Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucl Acids Res 35:406–413

    Article  CAS  Google Scholar 

  • Kanda M, Matthaei H, Wu J et al (2012) Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142:730–733

    Article  CAS  Google Scholar 

  • Kerkour A, Marquevielle J, Ivashchenko S et al (2017) High-resolution three-dimensional NMR structure of the KRAS proto-oncogene promoter reveals key features of a G-quadruplex involved in transcriptional regulation. J Biol Chem 292:8082–8091

    Article  CAS  Google Scholar 

  • Lago S, Nadai M, Cernilogar FM et al (2021) Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun 12:3885

    Article  CAS  Google Scholar 

  • Lavrado J, Borralho PM, Ohnmacht SA et al (2013) Synthesis, G-quadruplex stabilisation, docking studies, and effect on cancer cells of indolo[3,2-b]quinolones with one, two, or three basic side chains. Chem Med Chem 8:1648–1661

    CAS  Google Scholar 

  • Lavrado J, Ohnmacht SA, Correia I et al (2015a) Indolo[3,2-c]quinoline G-quadruplex stabilizers: a structural analysis of binding to the human telomeric G-quadruplex. ChemMedChem 10:836–849

    Article  CAS  Google Scholar 

  • Lavrado J, Brito H, Borralho PM et al (2015b) KRAS oncogene repression in colon cancer cell lines by G-quadruplex binding indolo[3,2-c]quinolines. Sci Rep 5:9696

    Article  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  Google Scholar 

  • Lima JF, Cerqueira L, Figueiredo C (2018) Anti-miRNA oligonucleotides: a comprehensive guide for design. RNA Biol 15:338–352

    Article  Google Scholar 

  • Lindsay CR, Blackhall FH (2019) Direct Ras G12C inhibitors: crossing the rubicon. Br J Cancer 121:197–198

    Article  Google Scholar 

  • Marchetti C, Zyner KG, Ohnmacht SA et al (2018) Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. J Med Chem 61:2500–2517

    Article  CAS  Google Scholar 

  • Marquevielle J, Robert C, Lagrabette O et al (2020) Structure of two G-quadruplexes in equilibrium in the KRAS promoter. Nucleic Acids Res 48:9336–9345

    Article  CAS  Google Scholar 

  • Miglietta G, Gouda AS, Cogoi S et al (2015) Nucleic acid targeted therapy: G4 oligonucleotides downregulate HRAS in bladder cancer cells through a decoy mechanism. ACS Med Chem Lett 6:179–183

    Article  Google Scholar 

  • Miglietta G, Cogoi S, Marinello J et al (2017) RNA G-Quadruplexes in Kirsten Ras (KRAS) oncogene as targets for small molecules inhibiting translation. J Med Chem 60:9448–9461

    Article  CAS  Google Scholar 

  • Nayun K (2019) The interplay between G-quadruplex and transcription. Curr Med Chem 26:2898–2917

    Article  Google Scholar 

  • O’Brien J, Hayder H, Zayed Y et al (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402

    Article  Google Scholar 

  • Ostrem JM, Peters U, Sos ML et al (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–551

    Article  CAS  Google Scholar 

  • Ou A, Schmidberger JW, Wilson KA et al (2020) High resolution crystal structure of a KRAS promoter G-quadruplex reveals a dimer with extensive poly-A pi-stacking interactions for small-molecule recognition. Nucleic Acids Res 48:5766–5776

    Article  CAS  Google Scholar 

  • Paramasivam M, Membrino A, Cogoi S et al (2009) Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: implications for transcription. Nucleic Acids Res 37:2841–2853

    Article  CAS  Google Scholar 

  • Paramasivam M, Cogoi S, Xodo LE (2011) Primer extension reactions as a tool to uncover folding motifs within complex G-rich sequences: analysis of the human KRAS NHE. Chem Commun (Camb) 47:4965–4967

    Article  CAS  Google Scholar 

  • Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81

    Article  CAS  Google Scholar 

  • Rahib L, Wehner MR, Matrisian LM et al (2021) Estimated projection of US cancer incidence and death to 2040. JAMA Netw Open 4:e214708

    Article  Google Scholar 

  • Rapozzi V, Zorzet S, Zacchigna M et al (2014) Anticancer activity of cationic porphyrins in melanoma tumor-bearing mice and mechanistic in vitro studies. Mol Cancer 13:75

    Article  Google Scholar 

  • Rawla P, Sunkara T, Gaduputi V (2019) Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol 10:10–27

    Article  Google Scholar 

  • Sabharwal NC, Mendoza O, Nicoludis JM et al (2016) Investigation of the interactions between Pt(II) and Pd(II) derivatives of 5,10,15,20-tetrakis (N-methyl-4-pyridyl) porphyrin and G-quadruplex DNA. J Biol Inorg Chem 21(227–239):65

    Google Scholar 

  • Saito I, Takayama M, Sugiyama H et al (1995) Photoinduced DNA cleavage via electron transfer: demonstration that guanine residues located 5’ to guanine are the most electron-donating sites. J Am Chem Soc 117:6406–6407

    Article  CAS  Google Scholar 

  • Santana-Codina N, Roeth AA, Zhang Y et al (2018) Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat Commun 9:4945

    Article  Google Scholar 

  • Sen M, Thomas SM, Kim S et al (2012) First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov 2:694–705

    Article  CAS  Google Scholar 

  • Siddiqui-Jain A, Grand CL, Bearss DJ et al (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci 99:11593–11598

    Article  CAS  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2018) Cancer Stat 68:7–30

    Google Scholar 

  • Skovsen E, Snyder JW, Lambert JDC et al (2005) Lifetime and diffusion of singlet oxygen in a cell. J Phys Chem B 109:8570–8573

    Article  CAS  Google Scholar 

  • Snead NM, Escamilla-Powers JR, Rossi JJ et al (2013) 5’unlocked nucleic acid modifications improves siRNA targeting. Mol Ther Nucleic Acids 2:e103

    Article  Google Scholar 

  • Soldatenkov VA, Vetcher AA, Duka T et al (2008) First evidence of a functional interaction between DNA quadruplexes and poly(ADP-ribose) polymerase-1. ACS Chem Biol 3:214–219

    Article  CAS  Google Scholar 

  • Son J, Lyssiotis CA, Ying H et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–105

    Article  CAS  Google Scholar 

  • Spiegel J, Cuesta SM, Adhikari S et al (2021) G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol 22:117

    Article  CAS  Google Scholar 

  • Steenken S, Jovanovic SV (1997) How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc 119:617–618

    Article  CAS  Google Scholar 

  • Stenvang J, Kauppinen S (2008) MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther 8:59–81

    Article  CAS  Google Scholar 

  • Sun SY (2010) N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol Ther 9:109–110

    Article  Google Scholar 

  • Todd AK, Neidle S (2008) The relationship of potential G-quadruplex sequences in cis -upstream regions of the human genome to SP1-binding elements. Nucleic Acids Res 36:2700–2704

    Article  CAS  Google Scholar 

  • Vallejo A, Perurena N, Guruceaga E et al (2017) An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun 8(14294)

    Google Scholar 

  • Von Hoff DD, Ervin T, Arena FP et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703

    Article  Google Scholar 

  • Waters AM, Der CJ (2018) KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect Med 8:a031435

    Article  Google Scholar 

  • Xodo LE, Cogoi S, Rapozzi V (2016) Photosensitizers binding to nucleic acids as anticancer agents. Future Med Chem 8:179–194

    Article  CAS  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  Google Scholar 

  • Ying H, Kimmelman AC, Lyssiotis CA et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–760

    Article  CAS  Google Scholar 

  • Zhan G, Zhang Z, Yong T et al (2021) Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors. Theranostics 11:1937–1952

    Article  Google Scholar 

  • Zheng KW, Xiao S, Liu JQ et al (2013) Co-transcriptional formation of DNA: RNA hybridG-quadruplex and potential function as constitutional cis-element for transcription control. Nucleic Acids Res 41:5533–5541

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi E. Xodo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Choudhary, H., Xodo, L.E. (2022). Targeted Cancer Therapy: KRAS-Specific Treatments for Pancreatic Cancer. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_69-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics