Skip to main content

Scaffold-Based Selective ROS Generation as Viable Therapeutic Strategies Against Cancer

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Reactive oxygen species (ROS) are by-products of normal cellular metabolism and play a crucial part in cell signaling and common cellular functions. An increasing field of evidence suggests that cancer cells contain an abnormally high content of ROS, and this biochemical attribute can be utilized for selective killing. Diverse chemotherapeutic agents have been developed that attack cancerous cells through several mechanisms, such as by amplifying the cells’ intrinsic oxidative stress, by directly generating ROS, or by inhibiting antioxidant enzymes. This occurs due to their vulnerability to further ROS insults. ROS modulation cancer therapy is a young and sustained research realm for medicinal chemistry community. This chapter reviews evidence linking specific scaffolds to reactive oxygen species generation in cancer treatment and the present status of the preclinical and clinical phases of promising synthetic/natural drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25(9):2097–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora S, Bhardwaj A, Singh S, Srivastava SK, McClellan S, Nirodi CS et al (2013) An undesired effect of chemotherapy: gemcitabine promotes pancreatic cancer cell invasiveness through reactive oxygen species-dependent, nuclear factor kappaB- and hypoxia-inducible factor 1alpha-mediated up-regulation of CXCR4. J Biol Chem 288(29):21197–21207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai A, Hara M, Kakita S, Kanda Y, Yoshida M, Saito H et al (1996) Thiol-mediated DNA alkylation by the novel antitumor antibiotic leinamycin. J Am Chem Soc 118(28):6802–6803

    Article  CAS  Google Scholar 

  • Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356(6367):301–309

    Article  CAS  PubMed  Google Scholar 

  • Bekele RT, Venkatraman G, Liu R-Z, Tang X, Mi S, Benesch MG et al (2016) Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance. Sci Rep 6(1):1–17

    Article  Google Scholar 

  • Bhuyan AAM, Bissinger R, Cao H, Lang F (2017) Triggering of suicidal erythrocyte death by exemestane. Cell Physiol Biochem 42(1):1–12

    Article  Google Scholar 

  • Bin L, Xu G, Z-q W, Ye D, Chen W, T-f L et al (2017) Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol Sin 38(11):1543–1553

    Article  Google Scholar 

  • Blackman RK, Cheung-Ong K, Gebbia M, Proia DA, He S, Kepros J et al (2012) Mitochondrial electron transport is the cellular target of the oncology drug elesclomol. PLoS One 7(1)

    Google Scholar 

  • Chio IIC, Tuveson DA (2017) ROS in cancer: the burning question. Trends Mol Med 23(5):411–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu W-H, Luo S-J, Chen C-L, Cheng J-H, Hsieh C-Y, Wang C-Y et al (2012) Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells. Biochem Pharmacol 83(9):1159–1171

    Article  CAS  PubMed  Google Scholar 

  • DeVita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653

    Article  CAS  PubMed  Google Scholar 

  • Dharmaraja AT (2017) Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem 60(8):3221–3240

    Article  CAS  PubMed  Google Scholar 

  • Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7(8):504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Seki T, Maeda H (2009) Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev 61(4):290–302

    Article  CAS  PubMed  Google Scholar 

  • Farber S, Diamond LK, Mercer RD, Sylvester RF Jr, Wolff JA (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N Engl J Med 238(23):787–793

    Article  CAS  PubMed  Google Scholar 

  • Fukuyo Y, Inoue M, Nakajima T, Higashikubo R, Horikoshi NT, Hunt C et al (2008) Oxidative stress plays a critical role in inactivating mutant BRAF by geldanamycin derivatives. Cancer Res 68(15):6324–6330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med 104:144–164

    Article  CAS  PubMed  Google Scholar 

  • Galmarini CM (2006) Drug evaluation: the thioredoxin inhibitor PX-12 in the treatment of cancer. Curr Opin Investig Drugs (London, England: 2000) 7(12):1108

    CAS  Google Scholar 

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB (2012) Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 16(11):1295–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Kumar BS, Negi AS (2013) Current status on development of steroids as anticancer agents. J Steroid Biochem Mol Biol 137:242–270

    Article  CAS  PubMed  Google Scholar 

  • Hagen H, Marzenell P, Jentzsch E, Wenz F, Veldwijk MR, Mokhir A (2012) Aminoferrocene-based prodrugs activated by reactive oxygen species. J Med Chem 55(2):924–934

    Article  CAS  PubMed  Google Scholar 

  • Han Q, Ma Y, Wang H, Dai Y, Chen C, Liu Y et al (2018) Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. J Transl Med 16(1):201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hileman EO, Liu J, Albitar M, Keating MJ, Huang P (2004) Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 53(3):209–219

    Article  CAS  PubMed  Google Scholar 

  • Jacob C (2006) A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat Prod Rep 23(6):851–863

    Article  CAS  PubMed  Google Scholar 

  • Jeelani R, Khan SN, Shaeib F, Kohan-Ghadr H-R, Aldhaheri SR, Najafi T et al (2017) Cyclophosphamide and acrolein induced oxidative stress leading to deterioration of metaphase II mouse oocyte quality. Free Radic Biol Med 110:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  • Jungwirth U, Kowol CR, Keppler BK, Hartinger CG, Berger W, Heffeter P (2011) Anticancer activity of metal complexes: involvement of redox processes. Antioxid Redox Signal 15(4):1085–1127

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5(9):689–698

    Article  CAS  PubMed  Google Scholar 

  • Kamb A, Wee S, Lengauer C (2007) Why is cancer drug discovery so difficult? Nat Rev Drug Discov 6(2):115–120

    Article  CAS  PubMed  Google Scholar 

  • Kuang Y, Balakrishnan K, Gandhi V, Peng X (2011) Hydrogen peroxide inducible DNA cross-linking agents: targeted anticancer prodrugs. J Am Chem Soc 133(48):19278–19281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhani NJ, Sarkar MA, Venitz J, Figg WD (2003) 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy 23(2):165–172

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lázaro M (2007) Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett 252(1):1–8

    Article  PubMed  Google Scholar 

  • Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B (2017) The role of ferroptosis in cancer development and treatment response. Front Pharmacol 8:992

    Article  PubMed  Google Scholar 

  • Major Jourden JL, Cohen SM (2010) Hydrogen peroxide activated matrix metalloproteinase inhibitors: a prodrug approach. Angew Chem Int Ed Engl 49(38):6795–6797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meshkini A, Yazdanparast R (2012) Involvement of oxidative stress in taxol-induced apoptosis in chronic myelogenous leukemia K562 cells. Exp Toxicol Pathol 64(4):357–365

    Article  CAS  PubMed  Google Scholar 

  • Noh J, Kwon B, Han E, Park M, Yang W, Cho W et al (2015) Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat Commun 6:6907

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Ganguly A, Chowdhuri S, Yousuf M, Ghosh A, Barui AK et al (2015) Bis-arylidene oxindole–betulinic Acid conjugate: a fluorescent cancer cell detector with potent anticancer activity. ACS Med Chem Lett 6(5):612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa L, Gomes E, Rockwell P (2007) Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis 12(8):1389–1405

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7(2):97–110

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Gandhi V (2012) ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage. Ther Deliv 3(7):823–833

    Article  CAS  PubMed  Google Scholar 

  • PĂ©rez-Galán P, Gl R, Villamor N, Montserrat E, Campo E, Colomer D (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107(1):257–264

    Article  PubMed  Google Scholar 

  • Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Gupta SC, Tyagi AK (2017) Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett 387:95–105

    Article  CAS  PubMed  Google Scholar 

  • Pritchard R, RodrĂ­guez-EnrĂ­quez S, Pacheco-Velázquez SC, Bortnik V, Moreno-Sánchez R, Ralph S (2018) Celecoxib inhibits mitochondrial O2 consumption, promoting ROS dependent death of murine and human metastatic cancer cells via the apoptotic signalling pathway. Biochem Pharmacol 154:318–334

    Article  CAS  PubMed  Google Scholar 

  • Renschler MF (2004) The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer 40(13):1934–1940

    Article  CAS  PubMed  Google Scholar 

  • Romero-Canelon I, Sadler PJ (2013) Next-generation metal anticancer complexes: multitargeting via redox modulation. Inorg Chem 52(21):12276–12291

    Article  CAS  PubMed  Google Scholar 

  • Sannu A, Radha R, Mathews A, Padmakumari Mony R, Prahladan A, James FV (2017) Ifosfamide-induced malignancy of ureter and bladder. Cureus 9(8):e1594

    PubMed  PubMed Central  Google Scholar 

  • Shin H-J, Kwon H-K, Lee J-H, Anwar MA, Choi S (2016) Etoposide induced cytotoxicity mediated by ROS and ERK in human kidney proximal tubule cells. Sci Rep 6(1):1–13

    Article  Google Scholar 

  • Singh NP, Lai HC (2004) Artemisinin induces apoptosis in human cancer cells. Anticancer Res 24(4):2277–2280

    CAS  PubMed  Google Scholar 

  • Singh RK, Kumar S, Prasad DN, Bhardwaj TR (2018) Therapeutic journery of nitrogen mustard as alkylating anticancer agents: historic to future perspectives. Eur J Med Chem 151:401–433

    Article  CAS  PubMed  Google Scholar 

  • Solit DB, Osman I, Polsky D, Panageas KS, Daud A, Goydos JS et al (2008) Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 14(24):8302–8307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon VR, Sharma S, Mahajan A, Bardi GH (2005) Oxidative stress: a novel strategy in cancer treatment. JK Sci 7(1):1–3

    Google Scholar 

  • Teppo H-R, Soini Y, Karihtala P (2017) Reactive oxygen species-mediated mechanisms of action of targeted cancer therapy. Oxidative Med Cell Longev 2017:1

    Article  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 10(3):241–252

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  CAS  PubMed  Google Scholar 

  • Tsang W, Chau SP, Kong S, Fung K, Kwok T (2003) Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci 73(16):2047–2058

    Article  CAS  PubMed  Google Scholar 

  • Verrax J, Stockis J, Tison A, Taper HS, Calderon PB (2006) Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice. Biochem Pharmacol 72(6):671–680

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7(12):1875–1884

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wei S, Wang J, Fang Q, Chai Q (2014) Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases. Mol Med Rep 10(1):543–549

    Article  PubMed  Google Scholar 

  • Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11(12):3013–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You Y (2005) Podophyllotoxin derivatives: current synthetic approaches for new anticancer agents. Curr Pharm Des 11(13):1695–1717

    Article  CAS  PubMed  Google Scholar 

  • Yousuf M, Jinka S, Adhikari S, Banerjee R (2020) Methoxy-enriched cationic stilbenes as anticancer therapeutics. Bioorg Chem 98:103719

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chen M, Zhang Y, Zhao L, Yan R, Dai K (2015) Carmustine induces platelet apoptosis. Platelets 26(5):437–442

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

M.Y. acknowledges postdoctoral fellowship support from SERB-DST (DST File No: PDF/2017/000439), New Delhi., M.T.A acknowledges DBT, Government of India, New Delhi for his doctoral research fellowship (Fellow: DBT/2016/IICT/723). R.B acknowledges the CSIR and SERB (Grant No. EMR/2017/002140), Govt. of India for financial support. This is CSIR-IICT manuscript No. IICT/Pubs./2020/154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yousuf, M., Ahmed, M.T., Banerjee, R. (2022). Scaffold-Based Selective ROS Generation as Viable Therapeutic Strategies Against Cancer. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_18

Download citation

Publish with us

Policies and ethics