Skip to main content

Characterization of Specialty Fibers

Handbook of Optical Fibers

Abstract

Specialty fibers play an important role both in scientific research and industrial applications. The past decades have also witnessed a significant benefit from specialty fibers. Behind these successes is a constant understanding of the performance of these fibers. In this chapter, characteristics of specialty fibers and their measurement technologies are discussed in detail, including dispersion characterization, polarization characterization, and other special characterization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • P.M. Becker, A.A. Olsson, J.R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, San Diego, 1999)

    Google Scholar 

  • R.D. Birch, D.N. Payne, M.P. Varnham, Fabrication of polarisation-maintaining fibres using gas-phase etching. Electron. Lett. 18(24), 1036–1038 (1982)

    Article  CAS  Google Scholar 

  • I.A. Bufetov, E.M. Dianov, Bi-doped fiber lasers. Laser Phys. Lett. 6(7), 487 (2009)

    Article  CAS  Google Scholar 

  • J.C. Chen, Y.S. Lin, C.N. Tsai, et al., 400-nm-bandwidth emission from a Cr-doped glass fiber. IEEE Photon. Technol. Lett. 19(8), 595–597 (2007)

    Article  CAS  Google Scholar 

  • B. Christensen, J. Mark, G. Jacobsen, et al., Simple dispersion measurement technique with high resolution. Electron. Lett. 29(1), 132 (2002)

    Article  Google Scholar 

  • Y. Chu, J. Ren, J. Zhang, et al., Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers. Sci. Rep. 6, 33865 (2016)

    Article  CAS  Google Scholar 

  • L.G. Cohen, Comparison of single-mode fiber dispersion measurement techniques. J. Lightwave Technol. 3(5), 958–966 (1985)

    Article  Google Scholar 

  • B. Costa, M. Puleo, E. Vezzoni, Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs. Electron. Lett. 19(25), 1074–1076 (2007)

    Google Scholar 

  • G. Della Valle, A. Festa, G. Sorbello, et al., Single-mode and high power waveguide lasers fabricated by ion-exchange. Opt. Express 16(16), 12334–12341 (2008)

    Article  CAS  Google Scholar 

  • E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley-Interscience, Hoboken, 2002)

    Google Scholar 

  • F. Devaux, Y. Sorel, J.F. Kerdiles, Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter. J. Lightwave Technol. 11(12), 1937–1940 (1993)

    Article  Google Scholar 

  • V.V. Dvoyrin, V.M. Mashinsky, L.I. Bulatov, et al., Bismuth-doped-glass optical fibers – a new active medium for lasers and amplifiers. Opt. Lett. 31(20), 2966–2968 (2006)

    Article  CAS  Google Scholar 

  • V.V. Dvoyrin, O.I. Medvedkov, V.M. Mashinsky, et al., Optical amplification in 1430–1495 nm range and laser action in Bi-doped fibers. Opt. Express 16(21), 16971–16976 (2008)

    Article  CAS  Google Scholar 

  • W. Eickhoff, E. Brinkmeyer, Scattering loss vs polarization holding ability of single-mode fibers. Appl. Opt. 23(8), 1131–1132 (1984)

    Article  CAS  Google Scholar 

  • N. Gisin, J.P.V.D. Weid, J. Pellaux, Polarization mode dispersion of short and long single-mode fibers. J. Lightwave Technol. 9(7), 821–827 (1991)

    Article  Google Scholar 

  • Y. Chu, J. Hao, J. Zhang et al., Temperature properties and potential temperature sensor based on the Bismuth/Erbium co-doped optical fibers[C]//Optical Fiber Sensors Conference (OFS), 2017 25th. IEEE, 1–4 (2017)

    Google Scholar 

  • B.L. Heffner, Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis. IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992)

    Article  Google Scholar 

  • B.L. Heffner, Accurate, automated measurement of differential group delay dispersion and principal state variation using Jones matrix eigenanalysis. IEEE Photon. Technol. Lett. 5(7), 814–817 (1993)

    Article  Google Scholar 

  • C. Hentschel, S. Schmidt, PDL Measurements Using the Agilent 8169A Polarization Controller, Product Note, Agilent Technologies.

    Google Scholar 

  • P. Hernday, in Fiber-Optic Test and Measurement, ed. by D. Derickson. Dispersion measurement (Prentice Hall, Upper Saddle River, 1998)

    Google Scholar 

  • T. Hosaka, Y. Sasaki, J. Noda, et al., Low-loss and low-crosstalk polarisation-maintaining optical fibres. Electron. Lett. 21(20), 920–921 (1985)

    Article  CAS  Google Scholar 

  • Z. Hu, W. Qiu, X. Cheng, et al., Optical amplification of Eu (TTA) 3 Phensolution-filled hollow optical fiber. Opt. Lett. 36(10), 1902–1904 (2011)

    Article  CAS  Google Scholar 

  • X. Huang, Z. Fang, Z. Peng, et al., Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers. Opt. Express 25(17), 19691–19700 (2017)

    Article  CAS  Google Scholar 

  • R. Hui, M. O’Sullivan, in Fiber Optic Measurement Techniques. Optical fiber measurement (Elsevier/Academic Press, Amsterdam/London, 2009), p. 365–479

    Google Scholar 

  • S.T. Huntington, P. Mulvaney, A. Roberts, et al., Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: a quantitative study. J. Appl. Phys. 82(6), 2730–2734 (1997)

    Article  CAS  Google Scholar 

  • S.D. Jackson, 2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm. Appl. Phys. B 76(7), 793–795 (2003)

    Article  CAS  Google Scholar 

  • S. Jarabo, J.M. Álvarez, Experimental cross sections of erbium-doped silica fibers pumped at 1480 nm. Appl. Opt. 37(12), 2288–2295 (1998)

    Article  CAS  Google Scholar 

  • I. Kaminow, Polarization in optical fibers. IEEE J. Quantum Electron. 17(1), 15–22 (1981)

    Article  Google Scholar 

  • I.P. Kaminow, V. Ramaswamy, Single-polarization optical fibers: slab model. Appl. Phys. Lett. 34(4), 268–270 (1979)

    Article  CAS  Google Scholar 

  • T. Kasamatsu, Y. Yano, H. Sekita, 1.50-μm-band gain-shifted thulium-doped fiber amplifier with 1.05-and 1.56-μm dual-wavelength pumping. Opt. Lett. 24(23), 1684–1686 (1999)

    Article  CAS  Google Scholar 

  • A.S. Kurkov, E.M. Sholokhov, O.I. Medvedkov, et al., Holmium fiber laser based on the heavily doped active fiber. Laser Phys. Lett. 6(9), 661 (2009)

    Article  CAS  Google Scholar 

  • H. Liang, Q. Zhang, Z. Zheng, et al., Optical amplification of Eu (DBM) 3 Phen-doped polymer optical fiber. Opt. Lett. 29(5), 477–479 (2004)

    Article  CAS  Google Scholar 

  • P.F. Moulton, G.A. Rines, E.V. Slobodtchikov, et al., Tm-doped fiber lasers: fundamentals and power scaling. IEEE J. Sel. Top. Quantum Electron 15(1), 85–92 (2009)

    Article  CAS  Google Scholar 

  • E.G. Neumann, Single-Mode Fibers Fundamentals, vol 57(4) (Springer, Tokyo, 1988), pp. 201–203

    Book  Google Scholar 

  • Y. Nishida, M. Yamada, T. Kanamori, et al., Development of an efficient praseodymium-doped fiber amplifier. IEEE J. Quantum Electron. 34(8), 1332–1339 (1998)

    Article  CAS  Google Scholar 

  • J. Noda, K. Okamoto, Y. Sasaki, Polarization-maintaining fibers and their applications. J. Lightwave Technol. 4(8), 1071–1089 (1986)

    Article  Google Scholar 

  • Y. Ohishi, E. Snitzer, G.H. Sigel, et al., Pr3+-doped fluoride fiber amplifier operating at 1.31 μm. Opt. Lett. 16(22), 1747–1749 (1991)

    Article  CAS  Google Scholar 

  • R. Paschotta, J. Nilsson, A.C. Tropper, et al., Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 33(7), 1049–1056 (1997)

    Article  CAS  Google Scholar 

  • D.N. Payne, A. Barlow, J.J. Ramskov Hansen, Development of low- and high-birefringence optical fibers. IEEE J. Quantum Electron. 18(4), 477–488 (1982)

    Article  Google Scholar 

  • G.D. Peng, Y. Luo, J. Zhang, et al., Recent development of new active optical fibres for broadband photonic applications. Photonics (ICP), 2013 IEEE 4th International Conference on. IEEE, 2013, pp. 5–9.

    Google Scholar 

  • C.D. Poole, D.L. Favin, Polarization-mode dispersion measurements based on transmission spectra through a polarizer. J. Lightwave Technol. 12(6), 917–929 (1994)

    Article  Google Scholar 

  • C.D. Poole, C.R. Giles, Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber. Opt. Lett. 13(2), 155–157 (1988)

    Article  CAS  Google Scholar 

  • C.D. Poole, J. Nagel, Polarization effects in lightwave systems. Opt. Fiber Telecommun. IIIA, 114–161 (1997)

    Article  Google Scholar 

  • R.S. Quimby, W.J. Miniscalco, B. Thompson, Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption. J. Appl. Physiol. 76(8), 4472–4478 (1994)

    Article  CAS  Google Scholar 

  • C. Saekeang, P.L. Chu, T.W. Whitbread, Nondestructive measurement of refractive-index profile and cross-sectional geometry of optical fiber preforms. Appl. Opt. 19(12), 2025–2030 (1980)

    Article  CAS  Google Scholar 

  • R.H. Stolen, R.P. De Paula, Single-mode fiber components. Proc. IEEE 75(11), 1498–1511 (1987)

    Article  CAS  Google Scholar 

  • R.H. Stolen, W. Pleibel, J.R. Simpson, High-birefringence optical fibers by preform deformation. J. Lightwave Technol. 2(5), 639–641 (1984)

    Article  Google Scholar 

  • L. Tan, S. Kang, Z. Pan, et al., Topo-chemical tailoring of tellurium quantum dot precipitation from supercooled polyphosphates for broadband optical amplification. Advanced Optical Materials 4(10), 1624–1634 (2016)

    Article  CAS  Google Scholar 

  • A. Tünnermann, T. Schreiber, J. Limpert, Fiber lasers and amplifiers: an ultrafast performance evolution. Appl. Opt. 49(25), F71–F78 (2010)

    Article  Google Scholar 

  • H.H. Wahba, T. Kreis, Characterization of graded index optical fibers by digital holographic interferometry. Appl. Opt. 48(8), 1573–1582 (2009)

    Article  Google Scholar 

  • J.P. Weid, L. Thevenaz, J.P. Pellaux, Interferometric measurements of chromatic and polarisation mode dispersion in highly birefringent single-mode fibres. Electron. Lett. 23(4), 151–152 (1987)

    Article  Google Scholar 

  • K.I. White, Practical application of the refracted near-field technique for the measurement of optical fibre refractive index profiles. Opt. Quant. Electron. 11(2), 185–196 (1979)

    Article  Google Scholar 

  • E. Yahel, A. Hardy, Modeling high-power Er3+-Yb3+ codoped fiber lasers. J. Lightwave Technol. 21(9), 2044 (2003)

    Article  CAS  Google Scholar 

  • S.M. Yeh, S.L. Huang, Y.J. Chiu, et al., Broadband chromium-doped fiber amplifiers for next-generation optical communication systems. J. Lightwave Technol. 30(6), 921–927 (2012)

    Article  CAS  Google Scholar 

  • S. Yliniemi, J. Albert, Q. Wang, et al., UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides. Opt. Express 14(7), 2898–2903 (2006)

    Article  CAS  Google Scholar 

  • J. Zhang, Y. Luo, Z.M. Sathi, et al., Test of spectral emission and absorption characteristics of active optical fibers by direct side pumping. Opt. Express 20(18), 20623–20628 (2012)

    Article  Google Scholar 

  • J. Zhang, Z.M. Sathi, Y. Luo, et al., Toward an ultra-broadband emission source based on the bismuth and erbium co-doped optical fiber and a single 830 nm laser diode pump. Opt. Express 21(6), 7786–7792 (2013)

    Article  CAS  Google Scholar 

  • A.S. Zlenko, V.V. Dvoyrin, V.M. Mashinsky, et al., Furnace chemical vapor deposition bismuth-doped silica-core holey fiber. Opt. Lett. 36(13), 2599–2601 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Zhang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chai, Q., Chu, Y., Zhang, J. (2018). Characterization of Specialty Fibers. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-1477-2_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1477-2_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1477-2

  • Online ISBN: 978-981-10-1477-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Characterization of Specialty Fibers
    Published:
    23 May 2019

    DOI: https://doi.org/10.1007/978-981-10-1477-2_59-2

  2. Original

    Characterization of Specialty Fibers
    Published:
    13 August 2018

    DOI: https://doi.org/10.1007/978-981-10-1477-2_59-1